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ABSTRACT

NUCLEAR ELECTROMAGNETIC CURRENTS IN

CHIRAL EFFECTIVE FIELD THEORY

Saori Pastore

Old Dominion University, 2010

Director: Dr. Rocco Schiavilla

A nucleon-nucleon potential and consistent nuclear electromagnetic currents are de-

rived in chiral effective field theory retaining pions and nucleons as explicit degrees of

freedom. The calculation of the potential is carried out up to next-to-next-to leading

order (N2LO), while the currents include up to N3LO corrections. The potential

at N2LO and currents at N3LO consist of two-pion-exchange and contact contribu-

tions. The currents are then utilized to study a number of low-energy electromagnetic

observables induced by magnetic dipole transitions, such as the deuteron and trinu-

cleon magnetic moments and the np, nd, and n3He radiative capture cross sections

at thermal neutron energies. The study shows that predictions obtained within this

theoretical framework are in good agreement with the experimental data.
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CHAPTER I

INTRODUCTION

Nuclei are composite systems made up of interacting quarks and gluons. At low

energies, quantum chromodynamics (QCD), the theory describing the quarks and

gluons dynamics does not have a simple solution. At these energies, the strong

coupling constant becomes too large and perturbative techniques cannot be applied

to solve QCD. Despite the tremendous effort focused on lattice calculations of QCD,

we are still far from a quantitative understanding of low-energy nuclear physics by

ab initio calculations in terms of fundamental degrees of freedom, i.e. quarks and

gluons.

The relevant degrees of freedom, in terms of which nuclear systems are described,

are bound states of QCD, such as pions, nucleons, and ∆-isobars. The symme-

tries exhibited by QCD in the low-energy regime, in particular chiral symmetry, are

exploited to constrain the interactions of pions among themselves and with other

baryons [1]. In particular, the pion couples to these particles by powers of its mo-

mentum Q, and the Lagrangians describing these interactions can be expanded in

powers of Q/M , where M ∼ 1 GeV represents the chiral-symmetry breaking scale

and characterizes the convergence of the expansion. Therefore, the effectiveness of

the theory is confined to kinematic regions where the constraint Q≪M is realized.

The coefficients of the chiral expansion, the so called low-energy constants (LECs),

are unknown and need to be fixed by comparison with experimental data. This ap-

proach, known as chiral effective field theory (χEFT), provides an expansion of the

Lagrangians in powers of a small momentum as opposed to an expansion in the strong

coupling constant, restoring de facto the applicability of perturbative techniques also

in the low-energy regime. Due to the chiral expansion it is then possible, in principle,

to evaluate an observable to any degree of desired accuracy and to know a priori the

hierarchy of interactions contributing to the (low-energy) process under study.

Since the pioneering work of Weinberg [1], this calculational scheme has been

widely utilized in nuclear physics and nuclear χEFT has developed into an intense

field of research. Nuclear two– and three–body interactions were first investigated

by Ordòñez, Ray, and van Kolck within the standard time ordered perturbation

theory (TOPT) framework [2]. More recently, a chiral two–nucleon potential has

been developed by Epelbaum et al. in Ref. [3], where the authors derive the nuclear
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potential with the method of the unitary transformation. Electroweak interactions

have also been described in a χEFT formulation. Interactions of nuclei with external

electroweak probes have been studied in covariant perturbation theory by Park, Min,

and Rho in Refs. [4, 5].

In this work we derive the nuclear electromagnetic current operator within a

χEFT formulation in which pions and nucleons are retained as relevant degrees of

freedom. Heavier degrees of freedom, such as nucleons’ excited states and/or heav-

ier mesons, are ‘integrated out’ and their interactions are implicitly accounted for

through the inclusion of contact terms. We use TOPT to evaluate the γNN → NN

transition amplitude. The Hamiltonians employed in the calculation are derived

from the chiral Lagrangians formulated in Refs. [1, 2, 6], describing the interactions

among relativistic pions and non-relativistic nucleons. The electromagnetic current

operator is calculated up to next-to-next-to-next-to leading order (or N3LO) in the

chiral expansion. At this order, it includes up to one– and two–pion–exchange (OPE

and TPE, respectively) contributions, as well as contact currents. The latter encode

the short-range physics, and their strengths are specified by the unknown LECs of

the theory. Some of these same LECs also enter the chiral nucleon-nucleon (NN)

potential at leading (LO) and next-to-next-to leading order (N2LO). Therefore, in

order to determine these LECs, we derive the chiral NN potential up to N2LO and

constrain it to fit NN scattering data as well as deuteron static properties. The

nuclear potential up to N2LO describes the long-range part of the interaction via

the static OPE potential. The intermediate– and short–range parts of the chiral NN

potential involve TPE contributions and four-nucleon contact interactions.

An important aspect of the derivation of the electromagnetic currents and two-

nucleon potential is that, in evaluating the corresponding transition amplitudes, we

retain both irreducible contributions and recoil-corrected reducible ones. The latter

arise from expanding the energy denominators (in reducible diagrams) in powers of

nucleon kinetic energy differences to pion energies (these ratios are of order Q). Par-

tial cancellations between the irreducible and recoil-corrected reducible contributions

occur at N2LO and N3LO in the case of the current operator, and at N2LO in the

case of the potential. This approach leads to N3LO electromagnetic currents which

are conserved with the corresponding N2LO two-body potential.

The current and nuclear potential present ultraviolet divergences which need to be

removed by a proper regularization procedure. There are two kinds of regularization
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employed here: the first is the usual regularization of the one loop corrections to the

potential and currents, and the second is the regularization necessary for solving the

Schrödinger equation and for the calculation of the current matrix elements. The

former is accomplished via dimensional regularization of the loop integrals entering

the TPE and loop corrections to the tree-level expressions for the potential and

electromagnetic current operators. The latter is implemented through the inclusion of

a short-range cutoff. The regularization of the potential and electromagnetic current

operators is followed by a renormalization procedure, i.e. divergences isolated by

the dimensional regularization scheme are reabsorbed, order by order, by the LECs

entering the potential and currents. The renormalized LECs are then determined by

fitting experimental data.

We use the chiral N3LO electromagnetic current operator to study the magnetic

moments of A = 2 and 3 nuclei, as well as the cross sections for the radiative

capture of thermal neutrons on p, d, and 3He. The capture involving A = 3 and 4

systems are especially interesting, since they are known to be very sensitive to both

the nuclear model utilized to generate the nuclear wave functions and the many-

body electromagnetic current operators [7, 8, 9, 10]. Therefore, they provide us

with an important tool to test the χEFT electromagnetic currents derived in the

present work. The calculation of the electromagnetic observables is carried out in

the hybrid approach, that is we use the χEFT currents sandwiched between wave

functions obtained from realistic potentials. Of course, intrinsic to this approach

is a mismatch between the short-range behavior of the adopted realistic potential

and that of the χEFT currents. This inconsistency could be avoided by using wave

functions derived from the χEFT potential developed in this thesis. However, this

program has yet to be implemented. Hence, in order to have an estimate of the

ensuing model dependence, the variation of the predictions is studied as function of

i) the short-range cutoff mentioned above, which is used to regularize the current

operator, and ii) of the input potentials—either the Argonne v18 (AV18) [11] or

chiral N3LO (N3LO) [12] in combination with, respectively, the Urbana IX [13] or

chiral N2LO [14]—used to generate the wave functions. We will compare the results

obtained in this work for the 2H(n,γ)3H and 3He(n,γ)4He cross sections with those

obtained in Refs. [7, 8, 9, 15] in the conventional approach (also referred to as the

standard nuclear physics approach, SNPA).
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This thesis is organized into seven chapters and five appendices. In Chapter II, af-

ter defining our notation and calculational scheme, we discuss the interaction Hamil-

tonians obtained from chiral Lagrangians with pions, nucleons and photons, and

define the power counting rules. In Chapter III we derive the renormalized chiral

nuclear potential up to order Q2 (N2LO), and present the fits of the nuclear potential

to the np phase shifts. The derivation of the chiral electromagnetic current operator

up to order eQ (N3LO) is carried out in Chapter IV. Chapter V is devoted to the

construction of the magnetic moment operator associated with the N3LO currents.

In Chapter VI, we present and discuss the results for the magnetic moments of A = 2

and 3 nuclei, and for the radiative-capture cross sections of thermal neutrons on p,

d, and 3He. Finally, in Chapter VII we summarize our conclusions. A number of

details are relegated in the Appendices, including: expressions for the interaction

Hamiltonians (Appendix A) and corresponding vertices (Appendix B); dimensional

regularization of loop integrals (Appendix C); details on the evaluation of loop correc-

tions to the OPE currents (Appendix D); and, lastly, a listing of the translationally

invariant components of the magnetic moment operator associated with the N3LO

one-loop currents (Appendix E).
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CHAPTER II

PRELIMINARIES

The nuclear two-body potential and electromagnetic current operators are obtained

by considering suitable transition amplitudes, 〈f | T | i〉 , where the final state | f〉
consists of two nucleons and the initial state | i〉 consists of two nucleons or two

nucleons and a photon depending on whether we are dealing with the potential or

electromagnetic current. We use time-ordered perturbation theory (TOPT) [16, 17]

to calculate the transition amplitude:

〈f | T | i〉 = 〈f | H1

∞∑

n=1

(
1

Ei −H0 + i η
H1

)n−1

| i〉 , (1)

where Ei and Ef = Ei are the initial and final energies, H0 is the Hamiltonian

describing free pions and nucleons, and H1 is the Hamiltonian describing the interac-

tions of these particles, as well as their couplings to the electromagnetic field. In the

following, because of the smallness of the electromagnetic coupling
√
α (α is the fine

structure constant), we will treat the electromagnetic interactions in first order. We

also note that the interaction Hamiltonians are expressed in the Schrödinger picture

and therefore are time-independent.

This introductory Chapter is devoted to define our notation and calculational

scheme. We introduce the nuclear and electromagnetic interaction Hamiltonians and

specify the power counting scheme adopted in the present work.

II.1 NOTATION

Before listing the interaction Hamiltonians, it is useful to define our notation and

conventions. The relativistic expressions of the isospin triplet of pion fields, πa(x),

and canonical conjugates, Πa(x), are given in the Schrödinger picture [16] by

πa(x) =
∑

p

1√
2ωpL3

[
cp,a eip·x + h.c.

]
, (2)

Πa(x) =
∑

p

− i
√

ωp

2L3

[
cp,a eip·x − h.c.

]
, (3)

where the normalized plane waves eip·x/L3/2 satisfy periodic boundary conditions in

a cubic box of volume L3, a = x, y, z, denotes the Cartesian component in isospin
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space, and cp,a and c†p,a respectively annihilate and create pions with momentum p.

They satisfy the following commutation relations:

[cp,a, c
†
p′,a′ ] = δpp′ δa a′ . (4)

The energy of the pion is given by ωp ≡ (p2 +m2
π)1/2, where the pion mass mπ ∼ 138

MeV is averaged over its charge states. For the time being, we neglect the effect of

isospin breaking, which leads to differences between the charged and neutral pion

masses. This effect will be discussed, in the case of the NN interaction, in Sec. III.

The charged pion field π± is expressed in terms of Cartesian components as

π±(x) =
1√
2

[πx(x)∓ iπy(x)] , (5)

and π+ (π−) annihilates a positively (negatively) charged pion, or creates a negatively

(positively) charged pion.

In Eqs. (2) and (3), a limit L → ∞ is implicit. In this limit, the discrete sum

over p is replaced by the integral below

∑

p

→ L3

∫
dp

(2π)3
. (6)

Since physical observables do not depend on the normalization volume, we set L3 = 1

throughout the rest of this work.

The nucleon field N(x) is taken in the non-relativistic limit as

N(x) =
∑

p,στ

bp,στ eip·xχστ , (7)

where bp,στ is the annihilation operator for a nucleon with momentum p, and spin

and isospin specified by the quantum numbers σ and τ , respectively. Its canonical

conjugate is iN †(x). The short-hand notation χστ is introduced to denote the spin-

isospin state χσ ητ . The b’s and b†’s satisfy the standard anticommutation relations,

appropriate for fermionic fields, i.e.

[
bp,στ , b

†
p′,σ′τ ′

]
+

= δpp′δσσ′δττ ′ , (8)

where [. . . , . . . ]+ denotes the anticommutator.

In the present non-relativistic theory, antinucleon degrees of freedom are ignored,

hence no nucleon-antinucleon pair can be created or annihilated.
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II.2 INTERACTION HAMILTONIANS

The Hamiltonian describing nucleons, pions, and photons, and their interactions is

defined as

H = H0 +H1 , (9)

where

H0 = Hπ +HN +Hγ , (10)

and Hπ, HN , and Hγ are the free pion, nucleon, and photon Hamiltonians, respec-

tively, while

H1 = Hstrong +He.m. , (11)

consists of Hstrong, which describes interacting pions and nucleons, and He.m. which

describes their couplings to the external electromagnetic field. We derive these Hamil-

tonians from the χEFT Lagrangians constructed in Refs. [1, 2, 6]. Here we discuss

the terms of H1 required to evaluate the NN potential and the electromagnetic cur-

rent at the order we are interested in. This statement will become clear once we

define our power counting and introduce a scheme to disregard contributions which

go beyond our level of required accuracy. For ease of reading, we defer the listing of

the explicit expressions of the interaction Hamiltonians to Appendix A.

The strong interaction Hamiltonian consists of the following terms

Hstrong = HπNN +HππNN +HCT0 +
∑

i=1,9

HCT2,i . (12)

The interactions above are schematically represented in Fig. 1 where we denote pions

and nucleons with dashed and solid lines, respectively. The πNN as well as the

Weinberg-Tomozawa interaction, describing the ππNN coupling, involve a derivative

of the pion field. These Hamiltonians are expressed in terms of “known” LECs, i.e.

the axial coupling constant gA ≃ 1.25 and the pion decay amplitude Fπ ≃ 186 MeV.

Unknown LECs enter in the four-nucleon contact interactions. Specifically, HCT0

is expressed in terms of two LECs, namely CS and CT . The contact Hamiltonians

HCT2,i, denoted in the figure with a full circle, involve two derivatives acting on the

nucleon fields, and they expressed in terms of fourteen LECs, here denoted as C ′
i,

i = 1, . . . , 14.
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HπNN HππNN HCT0 HCT2,i

gA, Fπ Fπ CS, CT C′i

FIG. 1: Schematic representation of the strong interaction Hamiltonians involved
in the calculation with indicated LECs. Pions are represented by dashed lines, and
nucleons by solid lines. The solid dot represents four-nucleon contact interactions
with two derivative couplings.

The electromagnetic interaction Hamiltonian has the following structure

He.m. = Hγππ +HγπNN +HγππNN +
∑

i=1,9

HCTγ,i

+ HγNN +H
(2)
γπNN +HCTγ,nm , (13)

and its individual contributions are represented in Figs. 2 and 3. The first four

terms in the equation above are obtained via minimal substitution into the pion and

nucleon derivative couplings entering H0 and Hstrong. Specifically, the γππ, γπNN ,

and γππNN interactions are obtained fromHπ, HπNN , HππNN by gauging the spatial

derivatives acting on the pion field:

∇π∓(x)→ [∇∓ i eA(x)]π∓(x) , (14)

where π± are the charged pion fields defined in Eq. (5), e(> 0) is the electric charge,

and A(x) is the transverse photon field in Coulomb gauge. The latter is expanded

as

A(x) =
∑

p

∑

λ=1,2

1√
2ωp

[
ap,λ eip·x êp,λ + h.c.

]
, (15)

and the linear polarization (unit) vectors êp,1, êp,2 form along with p̂ a right-handed

orthonormal system of axes, êp,1 × êp,2 = p̂.

The contact electromagnetic Hamiltonians HCTγ,i are obtained from the HCT2,i

via minimal substitution into the nucleon derivative couplings

∇N(x)→ [∇− i e eNA(x)]N(x) , (16)
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Hγππ HγπNN HγππNN HCTγ,i

FIG. 2: Schematic representation of the minimal electromagnetic interaction Hamil-
tonians involved in the calculation. Notation is as in Fig. 1 but for the wavy lines
which denote photons.

where eN = (1 + τz)/2.

We refer to the electromagnetic Hamiltonians generated by gauging the derivative

couplings as ‘minimal’ Hamiltonians. The LECs involved in these interactions, are

the same as those entering the strong sector.

The gauging of space-time derivatives is not sufficient to reproduce all the elec-

tromagnetic interactions compatible with the symmetries satisfied by the underlying

theory. In addition, one has to account for interactions involving the electromagnetic

field tensor (a gauge invariant quantity) Fµν = (∂µAν − ∂νAµ). The Hamiltonians

describing these interactions are referred to as ‘non-minimal’, and involve additional

LECs which are not constrained by the strong interactions. In particular, at the order

we are interested in, there are three ‘non-minimal’ electromagnetic Hamiltonians—

the last three terms in Eq. (13). The γNN Hamiltonian is obtained by considering

the non-relativistic limit of the corresponding covariant single-nucleon Hamiltonian,

as specified in Appendix A. The resulting γNN interaction consists of a ‘minimal’

and a ‘non-minimal’ term. The former is obtained by gauging the derivative couplings

entering the free-nucleon Hamiltonian. The ‘non-minimal’ interaction is expressed in

terms of the proton and neutron anomalous magnetic moments (κp = 1.793 n.m. and

κn = −1.931 n.m.). Thus this Hamiltonian is already determined by the experimen-

tal data. The H
(2)
γπNN Hamiltonian involves two derivatives, one acting on the pion

field and the other on the photon field, and is expressed in terms of the LECs d′8,

d′9, and d′21. Lastly, the ‘non-minimal’ electromagnetic contact Hamiltonian HCTγ,nm

involves two additional LECs, i.e. C ′
15 and C ′

16.
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HγNN H
(2)
γπNN HCTγ,nm

C ′15, C
′
16d′8, d

′
9, d
′
21µp, µn

FIG. 3: Schematic representation of non-minimal electromagnetic interaction Hamil-
tonians involved in the calculation with indicated LECs. Notation is as in Fig. 2.

II.3 TRANSITION AMPLITUDE IN TIME ORDERED PERTURBA-

TION THEORY

The evaluation of the transition amplitude is carried out, in practice, by inserting

complete sets of eigenstates of H0 between successive terms of H1 in the expansion

defined in Eq. (1), i.e.

〈f | T | i〉 = 〈f |H1| i〉 +
∑

I1

〈f |H1| I1〉
1

Ei −E1 + i η
〈I1 |H1| i〉

+
∑

I1, I2

〈f |H1| I2〉
1

Ei − E2 + i η
〈I2 |H1| I1〉

1

Ei − E1 + i η
〈I1 |H1| i〉+ . . . , (17)

where | I1〉 and | I2〉 are eigenstates of H0 with energies E1 and E2, respectively,

and H1 is the interaction Hamiltonian defined in Sec. II.2. The n-th order of the

perturbative series has n vertices 〈Ij |H1 | Ii〉, and (n − 1) energy denominators of

the form (Ei −Ej + i η)−1, with j = 1, . . . , (n− 1).

As an example, we discuss in detail the following second order term of the tran-

sition amplitude, which involves two πNN interaction Hamiltonians:

A =
∑

I

〈f |HπNN| I〉
1

Ei −EI + i η
〈I |HπNN| i〉 . (18)

To this end, we introduce a simplified notation for the nucleon states. We drop the

spin-isospin indices, thus a nucleon with momentum pi has spin-isospin quantum



11

numbers σi, τi, and spin-isospin state χi. For example, in this notation the two-

nucleon initial and final states read

| i〉 = | p1, χ1;p2, χ2〉 = b†p1
b†p2
| 0〉 ,

| f〉 = | p′
1, χ

′
1;p

′
2, χ

′
2〉 = b†

p′

1

b†
p′

2

| 0〉 , (19)

where | 0〉 represents the vacuum state (no mesons and nucleons are present).

Insertion of the explicit expressions for the pion and nucleon fields in the πNN

interaction Hamiltonian of Eq. (235) in Appendix A.1 leads to

HπNN = i
gA

Fπ

∑

pi pj

∑

k′,b

1√
2ωk′

χ†
i k

′ · σ τb χj

×
[∫

dx e−i (pi−pj−k′)·x b†pi
bpj

ck′,b −
∫
dx e−i (pi−pj+k′)·x b†pi

bpj
c†k′,b

]

= i
gA

Fπ

∑

pi pj

∑

k′,b

1√
2ωk′

χ†
i k

′ · σ τb χj

×
[
δpi−pj ,k′ b†pi

bpj
ck′,b − δpj−pi,k′ b†pi

bpj
c†k′,b

]
, (20)

where a summation over the spins σi, σj , and isospins τi, τj , is implicit. The previous

interaction Hamiltonian either annihilates or creates a pion with momentum k′, and

isospin component b. The initial and final states contain only two nucleons, and

hence, in order to have a non vanishing amplitude, the intermediate state | I〉 has to

include a pion. Consequently, the complete set of eigenstates of H0 to be inserted in

between the two successive HπNN of Eq. (18) is

∑

I

| I〉〈I | =
1

2

∑

pl pm

∑

k,a

| b†pl
b†pm

; c†k,a | 0〉〈0 | ck,a; bpm
bpl
| , (21)

where the factor 1/2 is needed to avoid double counting, since the two-nucleon states

are antisymmetrized.

We can now evaluate the vertices 〈f |HπNN | I〉 and 〈I |HπNN | i〉 entering the

amplitude of Eq. (18), in particular

〈f | HπNN | pl, χl;pm, χm;k, a〉 = −i gA

Fπ

∑

pi pj

∑

k′,b

1√
2ωk′

χ†
i k

′ · σ τb χj δpj−pi,k′

×〈0 | bp′

2
bp′

1
b†pi
bpj

b†pl
b†pm

ck′,bc
†
k,a | 0〉

= −i gA

Fπ

1√
2ωk

[
χ†

1′ k · σ τa χl δpl−p′

1
,k δp′

2
,pm
− χ†

2′ k · σ τa χl δpl−p′

2
,k δp′

1
,pm

+χ†
2′ k · σ τa χm δpm−p′

2
,k δp′

1
,pl
− χ†

1′ k · σ τa χm δpm−p′

1
,k δp′

2
,pl

]
, (22)
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where we used the standard commutation (anticommutation) relations of boson

(fermion) fields to reduce the product of ck,a’s (bpi
’s) operators. Note that only the

ck′,b term in the HπNN Hamiltonian of Eq. (20) contributes to the previous matrix

element. Similarly, we find

〈pl, χl;pm, χm;k, a | HπNN | i〉

= i
gA

Fπ

1√
2ωka

[
χ†

l k · σ τa χ1 δp′

l
−p1,k δp2,pm

− χ†
l k · σ τa χ2 δpl−p2,k δp′

1
,pm

+ χ†
m k · σ τa χ2 δpm−p2,k δp1,p′

l
− χ†

m k · σ τa χ1 δpm−p1,k δp2,pl

]
. (23)

Nucleons are treated non-relativistically, and the initial energy Ei, and the energy

EI of the intermediate state are

Ei = E1 + E2 = 2mN +
p2

1

2mN
+

p2
2

2mN
,

EI = El + Em + ωk = 2mN +
p2

l

2mN

+
p2

m

2mN

+ ωk , (24)

wheremN denotes the nucleon mass. In fact, we adopt the static limit approximation,

i.e. mN → ∞, and neglect the nucleons’ kinetic energies for the time being. Thus,

in this limit the energy denominator entering the amplitude of Eq. (18) becomes

1

(Ei −EI + iη)

∣∣∣∣
static

=
1

−ωk
. (25)

Combining the results obtained so far, we find the following amplitude

A =
1

2

∑

pl pm

∑

k,a

〈f | HπNN | b†pl
b†pm

; c†k,a | 0〉
1

−ωk
〈0 | ck,a; bpm

bpl
| HπNN | i〉

= − g
2
A

F 2
π

∑

k,a

1

2ω2
k

[
χ†

1′ k · σ τa χ1 χ†
2′ k · σ τa χ2 δp2−p′

2
,kδp′

1
−p1,k

+ χ†
1′ k · σ τa χ1 χ†

2′ k · σ τa χ2 δp1−p′

1
,kδp′

2
−p2,k − (exchange terms)

]

− g2
A

F 2
π

∑

k,a

∑

pl

1

2ω2
k

χ†
1′ (k · σ τa)

2 χ1 δp′

1
+k,pl

δp1+k,pl
δp′

2
,p2

− g2
A

F 2
π

∑

k,a

∑

pm

1

2ω2
k

χ†
2′ (k · σ τa)

2 χ2 δp′

2
+k,pm

δp2+k,pm
δp′

1
,p1
, (26)

where the exchange terms are derived by making the substitution (p′
1, σ

′
1, τ

′
1) ⇋

(p′
2, σ

′
2, τ

′
2), and changing the overall sign. The terms of the amplitude A can be

represented by the diagrams shown in Fig. 4. These diagrams can also be regarded
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| I〉
k

p′1 p′2

VπNN

VπNN

a)
p1 p2

b) c) d)

p̃2p̃1

FIG. 4: The time-ordered diagrams in panels a) and b) illustrate one-pion exchange
contributions to the transition amplitude. The disconnected diagrams in panels b)
and c) illustrate “self-energy” nucleon corrections. Notation is as in Fig. 1.

as time-ordered diagrams in which the time increases from down to up. The first

two terms of A, ignoring the exchange in the final state, are represented by one-pion

exchange (OPE) time-ordered diagrams in panels a) and b). The Kronecker’s delta

δp′

i,pi
in the last two terms of A indicates that one of the nucleons is not interacting.

These terms are represented by the disconnected diagrams of panels c) and d).

In the expression given in Eq. (26), a limit L3 →∞ is implicit, which implies

∑

pi

→
∫

dpi

(2π)3
≡
∫

pi

, (27)

δpi,pj
→ (2π)3δ(pi − pj) ≡ δ̄(pi − pj) . (28)

After making the above substitutions in the amplitude A, and summing over the

isospin components a of the pion field, we find

A = − g
2
A

F 2
π

τ1 · τ2
k · σ1 k · σ2

ω2
k

δ̄(p′
1 + p′

2 − p1 − p2)

− g2
A

F 2
π

∫

k

1

2ω2
k

τ1
2 (k · σ1)

2 δ̄(p′
1 − p1)δ̄(p

′
2 − p2)

− g2
A

F 2
π

∫

k

1

2ω2
k

τ
2
2 (k · σ2)

2 δ̄(p′
2 − p2) δ̄(p

′
1 − p1)

]

= AOPE +A disconnect, (29)

where the operator σi (τi) acts on the spin (isospin) state of nucleon i, with i = 1, 2,

and we indicate with AOPE the OPE amplitude—first line of Eq. (29)—and with

Adisconnect the amplitude of the disconnected contributions—last two lines of Eq. (29).
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The actual calculation of the transition amplitude is highly simplified once its

contributions are identified with time-ordered diagrams. To clarify this point, con-

sider the amplitude associated with the OPE contribution. We start off by drawing

all the possible time-ordered diagrams. Since there are two vertices, there are 2!

time-ordered diagrams, which are illustrated in panels a) and b) of Fig. 4. We fix the

direction of the initial and final nucleon momenta, as well as that of the virtual pion

momentum, and associate with the vertices the following matrix elements implied by

the πNN interaction Hamiltonian

VπNN(j,k) = 〈p′
j , χ

′
j;k, a | HπNN | pj , χj, 〉= −i

gA

Fπ

σj · k√
2ωk

τj,aδ̄(k + p′
j − pi),(30)

where j = 1, 2 indicates that the pion with momentum k, and isospin component a,

is hooked up with nucleon j. Note that this vertex describes the emission of a pion,

while the vertex associated with the absorption of a pion has the same structure

as that one given above, but for the overall sign due to k → −k. The δ̄(. . . )

function follows from the momentum conservation at each vertex. In the static

limit, the energy denominator −1/ωk is associated with the intermediate state, and

an integration over all the possible momenta of each virtual pion must be included.

Therefore, the OPE amplitude results from the sum of the amplitudes described by

the two time-ordered diagrams in panels a) and b) of Fig. 4, i.e.

AOPE =

∫

k

VπNN(2,k)
1

−ωk
VπNN(1,k) +

∫

k

VπNN(1,k)
1

−ωk
VπNN(2,k)

= −2
g2

A

F 2
π

∫

k

τ1 · τ2
k · σ1 k · σ2

2ω2
k

δ̄(k + p′
1 − p1)δ̄(k + p′

2 − p2)

= − g
2
A

F 2
π

τ1 · τ2
k · σ1 k · σ2

ω2
k

δ̄(p′
1 + p′

2 − p1 − p2) , (31)

where k = p′
1 − p1 = p2 − p′

2. Thus the OPE potential (OPEP) in the static limit

is defined as

vπ(k) = AOPE = − g
2
A

F 2
π

τ1 · τ2
k · σ1 k · σ2

ω2
k

, (32)

where we dropped the δ̄(. . . ) indicating an overall momentum conservation. Dia-

grams like those illustrating the OPE are called tree diagrams. In this type of contri-

butions the momenta of the intermediate states are fixed via momentum conservation

by the momenta of the initial and final states.

We apply the method described above to evaluate the amplitude A disconnect.

Again, we start off by drawing the time-ordered diagrams. Consider the diagram
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a) b) c) d)

e) f) g) h)

i) l) m) n)

| I〉

FIG. 5: Time-order diagrams for the two-pion exchange amplitude. Notation is as
in Fig. 1.

in panel c) of Fig. 4. In principle, there should be another time-ordered diagram

obtained by switching the order of the vertices. In fact, such a diagram would give

the same contribution as the original one illustrated in panel c), therefore it does not

enter the amplitude. In this diagram, there are two virtual particles, the pion with

momentum k, and the nucleon with momentum p̃1, as shown in the figure. Therefore,

we have to account for an integration over the pion momenta, as well as an integra-

tion over the nucleon momenta. A similar argument applies to the contribution in

panel d) of Fig. 4. The amplitude A disconnect is then given by

A disconnect = −
∫

ep1

∫

k

VπNN(1,k)
1

ωk

V ′
πNN(1,k)δ̄(p′

2 − p2)

−
∫

ep2

∫

k

VπNN(2,k)
1

ωk
V ′

πNN(2,k)δ̄(p′
1 − p1)

= − g
2
A

F 2
π

∫

k

1

2ω2
k

τ
2
1 (k · σ1)

2 δ̄(p′
1 − p1)δ̄(p

′
2 − p2)

− g2
A

F 2
π

∫

k

1

2ω2
k

τ
2
2 (k · σ2)

2 δ̄(p′
2 − p2) δ̄(p

′
1 − p1) , (33)

where in the first two lines, a δ̄-function in the initial and final three momenta has
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been introduced to account for the non-interacting nucleon. These diagrams involve

loops. In this type of contributions the momenta entering the intermediate states

are not fixed by momentum conservation. Each loop is expressed in terms of one

unknown momentum, and its evaluation involves an integration over all the possible

values of this momentum.

We have introduced a practical calculational scheme to evaluate the contributions

to the transition amplitude. Once the vertices implied by the interaction Hamilto-

nians listed in Appendix A are derived, the calculation of the amplitude is fairly

straightforward. In Appendix B, we derived the strong and electromagnetic vertices

induced by the interaction Hamiltonians. The calculation of the vertices follows that

one we outlined here. In general, we distinguish between two major classes of dia-

grams: i) tree diagrams and ii) loops diagrams. The latter involve integrations over

internal momenta. Divergences arising from the integration are removed employing

dimensional regularization [18, 19, 20]. Loop diagrams in which the virtual pion is

emitted and absorbed by the same nucleon, as in those shown in panels c) and d) of

Fig. 4, are referred to as “self-energy” corrections.

Contributions to the transition amplitude, which involve pure nucleonic interme-

diate states, are referred to as reducible contributions. Those whose intermediate

states involve at least one pion are called irreducible. For example, consider the two-

pion exchange (TPE) ‘box’ contribution to the NN transition amplitude represented

by the time-ordered diagrams shown in Fig. 5. Diagrams illustrated in the first row

are reducible, while the remaining ones are irreducible. Reducible contributions are

generated when one iterates the static OPEP into the Lippmann-Schwinger equation.

Thus reducible contributions, evaluated within the static limit approximation, need

to be disregarded, since they are already embedded into the iterated solution of the

Lippmann-Schwinger equation (see Sec. IV.1.1). The TOPT framework enables us

to correctly identify these redundant contributions, moreover it allows us to properly

account for deviations from the static limit approximation. The latter are referred

to as recoil corrections, and will be discussed later in this work.

II.4 POWER COUNTING

The Hamiltonians describing nuclear dynamics have been derived from χEFT La-

grangians constructed in terms of pion and nucleon degrees of freedom. Contributions

arising from the inclusion of additional degrees of freedom, such as the ∆-resonance
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and heavier mesons, are effectively accounted for in the LECs entering the inter-

action Hamiltonians. The Lagrangians provided by χEFT are expanded in powers

Q/M , where Q ≪ M is the pion momentum-coupling and M ∼ 1 GeV is the

chiral-symmetry breaking scale and characterizes the convergence of the expansion.

In principle, these Lagrangians contain an infinite number of interactions compat-

ible with the symmetries exhibited by QCD. However, the transition amplitudes

obtained from them can be expanded in terms of (Q/M)n. For each given order n of

the expansion, the number of terms contributing to the amplitudes is finite [1].

The NN potential (electromagnetic current) operator is related to the NN →
NN (γNN → NN) transition amplitude given in TOPT by the perturbative series

of Eq. (1). Due to the chiral expansion, we can arrange the contributions to the

transition amplitude Tfi = 〈f | T | i〉 as

Tfi = T LO
fi + TNLO

fi + TN2LO
fi + . . . , (34)

where

TNnLO
fi ∼

(
Q

M

)n

T LO
fi . (35)

Each TNnLO
fi term in the expansion above is suppressed by a factor of (Q/M)n with

respect to the leading order (LO) contribution.

The power counting allows us to evaluate the scaling, with respect to Q, of the

terms entering the transition amplitude. These terms are conveniently represented

by time-ordered diagrams characterized by a certain number, n, of vertices, βi pions

absorbed or emitted at each vertex i, n − 1 energy denominators, and possibly L

loops. The power counting implied by the interaction Hamiltonians is easily inferred

by examining the structures of the vertices listed in Appendix B. In particular, since

the pion couples to nucleons, and other pions, by power of its low-momentum Q, a

vertex i scales as Qαi where αi is the power of the pion momentum, or equivalently

the number of derivatives of the pion field (or of pion mass factors). The scaling of

the strong interaction Hamiltonians (vertices) listed in Appendix A.1 (Appendix B.1)

is reported in Table 1.

Each of the n−1 energy denominators, entering the contributions to the transition

amplitude, involves pion energies, ωk =
√
k2 +m2

π, and differences between nucleons’

energies, ∆E = Ei − EI , where EI represents the energies of the nucleons in an

intermediate state. We assume that the pion mass mπ, and its energy ωk are of

order Q, while ∆E, which involves only nucleons’ kinetic energies, is suppressed by
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a factor Q/M relative to the pion energy, that is ∆E ∼ Q2/M . In our formulation,

where we utilize the static limit approximation, the energy denominators scale as

∼ ω−1
k ∼ Q−1, since the term due to ∆E vanishes in this limit. Thus the n − 1

energy denominators are of order ∼ Q−(n−1).

The Hamiltonians’ power counting reported in Table 1 does not account for the

normalization factor 1/
√

2ωk included in the expression of the pion field. There is

one normalization factor for each pion absorbed (or emitted) at vertex i, thus an

additional factor of Q−βi/2 is associated with the vertices.

Q-scaling
HπNN Q
HππNN Q
HCT0 Q0

HCT2,i Q2

TABLE 1: Powers of Q, the small momentum scale, associated with the vertices
from the strong-interaction Hamiltonians of Sec. A.1.

Finally, loops contribute a factor Q3 each, since they involve integrations over in-

termediate three momenta. Hence the power counting associated with an irreducible

contribution is

irreducible contribution =

(
n∏

i=1

Qαi−βi/2

)
×Q−(n−1) ×Q3L , (36)

in the static limit. Explicit inclusion of the nucleon kinetic energy differences in

the evaluation of the energy denominators leads to an additional factor of Q on the

r.h.s. of Eq. (36). Following the counting defined in Eq. (36), it is easy to see that

the OPE amplitude evaluated in Sec. II.3—panels a) and b) of Fig. 4—scales as Q0,

and occurs at LO. In this work we evaluate the NN potential up to next-to-next-to

leading order (N2LO), that is up to order Q2 in the power counting.

Disconnected diagrams, like those illustrated in panels c) and d) of Fig. 6, are

enhanced by a factor of Q−3, owing to the presence of a δ-function in the initial and

final three momenta of one of the two non-interacting particles. For example, panel

c) of Fig. 6 ∝ δ(p′
2 − p2), and the total scaling of this disconnected contribution is

Q0.
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Q-scaling
Hγππ eQ
HγπNN eQ0

HγππNN eQ
HCTγ eQ
HγNN eQ

H
(2)
γπNN eQ2

HCTγ,nm eQ

TABLE 2: Powers of Q, the small momentum scale, associated with the vertices
from the electromagnetic-interaction Hamiltonians of Sec. A.2.

The γNN → NN transition amplitude can be schematically represented by the

diagrams illustrated in Fig. 6, where we show both disconnected and connected con-

tributions. The power counting is not affected by the introduction of the photon field

and follows the relation defined in Eq. (36). The photon’s energy is denoted by ωq,

and is assumed to scales as ∼ Q2/M . This scaling follows from energy conservation

between the initial and final states, that is Ei − Ef = ∆E + ωq = 0.

q

a)
p1 p2

=

b) c)

p′1 p′2

FIG. 6: Schematic representation of the disconnected, a) and b), and connected, c),
contributions to the γNN → NN amplitude. Notation is as in Fig. 2.

Each electromagnetic Hamiltonian scales as eQαi , where αi is related to the power

of pion or photon momenta entering the vertex, and e is the electric charge brought

in by the electromagnetic coupling. The scaling of these Hamiltonians is summarized

in Table 2, and can be easily inferred from the expressions of the vertices listed in

Appendix B.2.

Following the power counting of Eq. (36), we can evaluate the scaling of the

disconnected diagrams shown in panels a) and b) of Fig. 6. According to Table 2, the

γNN vertex scales as eQ, while the δ-function in the initial and final three momenta
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of the non-interacting nucleon brings in a factor of Q−3, thus these diagrams scale as

eQ−2. These disconnected contributions are enhanced by a factor Q−3 relative to the

connected contributions in panel c). In fact, these diagrams are the LO contributions

to the nuclear electromagnetic current, which will be evaluate here up to N3LO, that

is up to order eQ.
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CHAPTER III

NUCLEON-NUCLEON POTENTIAL IN χEFT

The main objective of the analysis reported in this chapter is to determine the LECs

entering the strong Hamiltonians defined in Appendix A.1. These LECs are also

present in the electromagnetic interactions implied by minimal substitution in the

pion and nucleon derivative couplings, consequently they are fundamental to de-

termine the nuclear electromagnetic current operator of interest here. In order to

constrain the LECs, we derive the NN potential v12, and fix these LECs so as to

reproduce NN scattering data as well as deuteron static properties.

In our formulation, where nucleons are treated non-relativistically, the Hamilto-

nian describing the two-nucleon system consists of a term which results from the sum

of the single-nucleon non-relativistic kinetic energies, and the two-body potential v12

H =
p 2

1

2mN

+
p 2

2

2mN

+ v12 . (37)

The contributions to the NN → NN transition amplitude, up to order Q2 are

represented in Fig. 7. Specifically, at LO (Q0) there is a contact interaction, panel a),

along with the static OPE contribution, panel b). At N2LO we distinguish among

three different categories, which are: i) contact interactions involving two gradients

acting on the nucleons’ fields, panel c); ii) TPE loop contributions, panels d)-f);

and iii) loop corrections to the LO contact interaction, panels g) and i), and to the

OPE contribution, panel h). Note that in the figure we display only one among the

possible time orderings.

The evaluation of the transition amplitude follows the steps outlined in Sec. II.3.

Diagrams in panels a)-e) are irreducible, while those in panels f)-i) have both re-

ducible and irreducible topologies. The evaluation of the reducible diagrams is car-

ried out by subtracting static contributions which are already accounted for in the

iterated solution of the Lippmann-Schwinger equation.

The phase-shift analysis is reported in Sec. III.3, where we list the values of the

LECs obtained from the fits.
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e)c) d) f) g) h) i)

a) b)
p

p′ −p′

−p

FIG. 7: Diagrams illustrating contributions to the NN potential entering at LO
(Q 0), panels a) and b), and N2LO (Q 2), panels c)-i). Notation is as in Fig. 1. The
filled circle in panel c) represents the vertex from contact Hamiltonians containing
two gradients of the nucleons’ fields. Only one among the possible time orderings is
shown for each contribution with more than one vertex.

III.1 NN POTENTIAL UP TO N2LO: FORMAL EXPRESSIONS

In what follows, the potential is derived in the center-of-mass frame where the nu-

cleons’ initial and final relative momenta are p and p′, respectively. We also define

k = p′ − p, K = (p′ + p)/2, and ωk =
√
k2 +m2

π.

III.1.1 Tree-Level and Contact NN Potential

We start off by evaluating the NN potential at LO. The amplitude resulting from

the contact interaction Hamiltonian HCT0 of Eq. (237) is illustrated by the diagram

in panel a) of Fig. 7 and gives rise to the LO order contact potential vCT0, which is

expressed in terms of the two LECs CS and CT as

vCT0 = CS + CT σ1 · σ2 . (38)

The static OPEP is illustrated panel b) of Fig. 7 and has been evaluated in Sec. II.3,

where we found

vπ(k) = − g
2
A

F 2
π

τ1 · τ2
σ1 · kσ2 · k

ω2
k

. (39)

Next we consider the contributions arising from panel c). These are implied by

the contact Hamiltonians involving two gradients acting on the nucleons’ fields given
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in Eqs. (239)–(247), therefore the corresponding NN potential is of order Q2, or

N2LO. As an example, we consider the contribution due to the Hamiltonian HCT2,1.

The evaluation of the vertex implied by this contact interaction has been carried

out in a generic frame with nucleon i = 1, 2 having initial and final momenta pi

and p′
i, respectively, and its expression is given in Eq. (287) of Appendix B.3. The

corresponding contact potential vCT2,1 then reads

vCT2,1(p1,p2) = −2C ′
1 (p1 · p2 + p′

1 · p′
2) , (40)

which reduces to

vCT2,1(k2, K2) = C ′
1

(
k2 + 4K2

)
, (41)

in the center-of-mass frame. Similar expressions are found for the remaining contact

interactions, and the resulting contact potential at N2LO is in practice given by the

sum of the matrix elements listed in Eqs. (287)–(295), evaluated in the center-of-

mass frame. In this frame, it is expressed in terms of seven independent operatorial

structures, each multiplied by a coefficient which is a linear combination of the C ′
i

LECs entering the contact interaction Hamiltonians. Specifically,

vCT2(k,K) = C1 k
2 + C2K

2 + (C3 k
2 + C4K

2) σ1 · σ2 + i C5
σ1 + σ2

2
·K× k

+ C6 σ1 · k σ2 · k + C7 σ1 ·K σ2 ·K , (42)

where the Ci’s (i = 1, . . . , 7) are linear combinations of the C ′
i’s (i = 1, . . . , 14), given

by

C1 = C ′
1 − C ′

3 + C ′
2/2 ,

C2 = 4C ′
1 − 4C ′

3 − 2C ′
2 ,

C3 = C ′
9 + C ′

12/2− C ′
14 ,

C4 = 4C ′
9 − 2C ′

12 + 4C ′
14 , (43)

C5 = 2C ′
5 − 4C ′

4 − 2C ′
6 ,

C6 = C ′
7 + C ′

8 + C ′
10/2 + C ′

11/2− C ′
13 ,

C7 = 4C ′
7 + 4C ′

8 − 2C ′
10 − 2C ′

11 + 4C ′
13 .

In Ref. [21] we showed that the number of C ′
i is redundant, since it is possible to relate

the contact interactions proportional to C ′
4, C

′
5, and C ′

6 and those proportional to C ′
7,

C ′
8, C

′
10, and C ′

11 by means of partial integrations in the corresponding Lagrangians.

For the sake of clarity, we utilize the same notation adopted in Ref. [2, 3], but one
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should keep in mind that relations among contact interactions exist which reduce the

number of independent LECs.

q1

q2

p −p

a) b) c) d) f)

p′ −p′

FIG. 8: Complete set of time-ordered diagrams for the TPE ‘triangle’ contribution,
panels a)-c); complete set of time-ordered diagrams for the TPE ‘football’ contribu-
tion, panels d) and e). Notation is as in Fig. 1.

III.1.2 Loop Corrections to the NN Potential

Loop contributions enter at N2LO, and are represented in panels d)-i) of Fig. 7.

The TPE ‘triangle’ and ‘football’ contributions illustrated in panels d) and e), re-

spectively, are irreducible, and the complete set of time-ordered diagrams is shown

in Fig. 8. The evaluation of the corresponding amplitudes leads to the following

contributions

vd(k) = −2
g2

A

F 4
π

τ1 · τ2

∫

q1

∫

q2

1

ω1 ω2(ω1 + ω2)
δ̄(q1 + q2 + k)

× [q1 · q2 − iσ1 · (q1 × q2)] + (1 ⇋ 2) , (44)

ve(k) = −1

2

1

F 4
π

τ1 · τ2

∫

q1

∫

q2

(ω1 − ω2)
2

ω1 ω2(ω1 + ω2)
δ̄(q1 + q2 + k) , (45)

where ωi = (q2
i + m2

π)1/2, and qi are energies and momenta of the exchanged vir-

tual pions, as specified in Fig. 8. The (1 ⇋ 2) in Eq. (44) indicates the operation

of exchanging the two nucleons, thus it corresponds to exchange (τ1, σ1, p, p
′) ⇋

(τ2, σ2, −p, −p′). Note that the factor 1/2 multiplying the ‘football’ contribution—

panels d and f)—is a symmetrization factor, avoiding double counting of the closed

pion loop. Changing the variables of integration in the above expressions to

P = q1 + q2, p = q1 − q2 , (46)
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and integrating over P, lead to

vd(k) =
g2

A

F 4
π

τ1 · τ2

∫

p

p2 − k2

ω+ ω−(ω+ + ω−)
, (47)

ve(k) = − 1

8F 4
π

τ1 · τ2

∫

p

(ω+ − ω−)2

ω+ ω−(ω+ + ω−)
, (48)

where ω± =
√

(p± k)2 + 4m2
π. Note that the term σ1 ·(q1×q2) in Eq. (44) becomes,

after the change of variables σ1 · (p× k)/2, and gives a vanishing contribution since

it is odd under p→ −p.

−pp

a) b)

p′ −p′

q1

q2 q1

q2

FIG. 9: Irreducible direct TPE ‘box’ diagram, panel a); irreducible crossed TPE
‘box’ diagram, panel b). Notation is as in Fig. 1. Only one among the possible
time-ordered diagrams is shown.

The TPE ‘box’ contribution is shown in panel f) of Fig. 7. As illustrated in

Fig. 5, this TPE amplitude results from 12 time-ordered diagrams, which have both

irreducible and reducible parts. We start off by evaluating the transition amplitude

arising from the irreducible diagrams. We utilize the same notation introduced in

Sec. II.3 and denote with VπNN (i,q j) the vertex from the πNN interaction Hamilto-

nian relative to nucleon i and a pion with momentum q j. The irreducible diagrams

account for the following term in the NN potential

virr
f (k) = −2

∫

q1

∫

q2

δ̄(q1 + q2 + k)×
[ 1

ω1 ω2(ω1 + ω2)
VπNN (2,q2)VπNN(2,q1)VπNN(1,q2)VπNN(1,q1)

+
ω2

1 + ω2
2 + ω1 ω2

ω2
1 ω

2
2(ω1 + ω2)

VπNN(2,q1)VπNN(2,q2)VπNN(1,q2)VπNN(1,q1)
]
.(49)

The first term in the equation above comes from the irreducible direct diagrams (in

which, with reference to Fig. 9, pion 1 is absorbed before pion 2), while the second
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term is from the crossed diagrams (in which pion 1 is absorbed after pion 2). In fact,

the two vertex sequences entering the previous equation are the same, but for the

positions of the vertices involving nucleon 2, which are switched in the crossed term.

Reducible diagrams, evaluated within the static limit approximation, lead to con-

tributions which are embedded into the Lippmann-Schwinger equation where a static

OPEP is iterated, thus we disregard the amplitude resulting from these diagrams.

However, recoil corrections to the static OPEP, due to the kinetic energies of the nu-

cleons, need to be accounted for. Recoil corrected reducible diagrams lead to terms

of order Q2 in the transition amplitude, and must be included in the evaluation of

the TPE amplitude along with irreducible contributions.

a) b) c) d)

p̃1 p̃2

q2

q1

FIG. 10: Time-ordered reducible diagrams for the TPE ‘box’ contribution. Notation
is as in Fig. 1. Only one among the possible time-ordered diagrams is shown.

The transition amplitude resulting from the reducible diagrams illustrated in

Fig. 10 is given by

vred
f (k) =

∫

q1

∫

q2

δ̄(q1 + q2 + k)
1

(Ei − Ẽ1 − Ẽ2 + iη)
(Da +Db +Dc +Dd)

× VπNN(2,q2)VπNN(2,q1)VπNN(1,q2)VπNN(1,q1) , (50)

where Ẽi are the energies of the intermediate nucleons, while the D’s represent the

energy denominators entering the amplitudes illustrated by the diagrams of panels

a)-d) of Fig. 10. The latter can be easily inferred from the figures and read

Da =
1

(Ei − Ẽ1 − E2 − ω1 + iη)

1

(Ei − E1
′ − Ẽ2 − ω2 + iη)

, (51)

Db =
1

(Ei − Ẽ1 − E2 − ω1 + iη)

1

(Ei − Ẽ1 − E2
′ − ω2 + iη)

,

Dc =
1

(Ei −E1 − Ẽ2 − ω1 + iη)

1

(Ei − E1
′ − Ẽ2 − ω2 + iη)

,

Dd =
1

(Ei −E1 − Ẽ2 − ω1 + iη)

1

(Ei − Ẽ1 − E2
′ − ω2 + iη)

,
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where E1 and E2 are the initial nucleons’ energies, and E ′
1 and E ′

2 are the final nucle-

ons’ energies. Recoil corrections are obtained by expanding the energy denominators

in powers of ∆E/ωi ∼ Q, where ∆E represents nucleon kinetic energy differences,

and ωi is the energy of the exchanged pion. For example, the energy denominator

Da is expanded as

Da =
1

ω1 ω2

[
1 +

Ei − Ẽ1 − E2

ω1
+O(Q2)

][
1 +

Ei −E1
′ − Ẽ2

ω2
+O(Q2)

]
, (52)

and similar expressions are found for the remaining energy factors listed in Eq. (51).

The sum of the energy denominators entering Eq. (50) then reads

Da +Db +Dc +Dd =
2

ω1 ω2

[
2 +

ω1 + ω2

ω1 ω2
(Ei − Ẽ1 − Ẽ2) +O(Q2)

]
. (53)

Insertion of the previous result into Eq. (50) leads to the following expression for the

reducible TPE ‘box’ contribution

vred
f (k) =

∫

q1

∫

q2

δ̄(q1 + q2 + k)
1

(Ei − Ẽ1 − Ẽ2 + iη)

× VπNN(2,q2)
2

ω2

VπNN(1,q2)VπNN(2,q1)
2

ω1

VπNN(1,q1)

+ 2

∫

q1

∫

q2

δ̄(q1 + q2 + k)
ω1 + ω2

ω2
1 ω

2
2

× VπNN(2,q2)VπNN(2,q1)VπNN(1,q2)VπNN(1,q1) . (54)

The first term in the equation above is identified with an iteration of the static OPEP

into the Lippmann-Schwinger equation, namely

vLS
f (k) =

∫

q1

∫

q2

δ̄(q1 + q2 + k)vπ(q2)
1

(Ei − Ẽ1 − Ẽ2 + iη)
vπ(q1) , (55)

where

vπ(qi) = −VπNN (2,qi)
2

ωi
VπNN(1,qi) = − g

2
A

F 2
π

τ1 · τ2
qi · σ1 qi · σ2

ω2
i

. (56)

The N2LO recoil corrected reducible contribution is given by the second term in

Eq. (54), that is

vrec
f (k) = 2

∫

q1

∫

q2

δ̄(q1 + q2 + k)
ω1 + ω2

ω2
1 ω

2
2

× VπNN(2,q2)VπNN(2,q1)VπNN(1,q2)VπNN(1,q1) . (57)
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The TPE ‘box’ amplitude is obtained by combining the expression above with the

N2LO irreducible contribution given in Eq.(49),

vf(k) = virr
f (k) + vrec

f (k)

= 2

∫

q1

∫

q2

δ̄(q1 + q2 + k)
ω2

1 + ω2
2 + ω1 ω2

ω2
1 ω

2
2(ω1 + ω2)

× [VπNN(2,q2), VπNN(2,q1)]VπNN(1,q2)VπNN(1,q1) , (58)

where the [. . . , . . . ] indicates a commutator. Insertion of the explicit expressions of

the vertices in the previous equation gives

vf(k) = −2 g4
A

F 4
π

∫

q1

∫

q2

δ̄(q1 + q2 − k)
ω2

1 + ω2
2 + ω1 ω2

ω3
1 ω

3
2(ω1 + ω2)

×
[
2 τ1 · τ2(q1 · q2)

2 − 3 σ1 · (q1 × q2)σ2 · (q1 × q2)
]
, (59)

which reduces to

vf(k) = − g4
A

2F 4
π

∫

p

ω2
+ + ω+ ω− + ω2

−

ω3
+ ω

3
−(ω+ + ω−)

×
[
τ1 · τ2 (p2 − k2)2 + 6 σ1 · (k× p) σ2 · (k× p)

]
, (60)

once the change of integration variables defined in Eq. (46) is made. Thus, the TPE

loop diagrams of panels d)–f) of Fig. 7 generate the following contribution to the NN

potential

v2π(k) = vd(k) + ve(k) + vf(k) (61)

=
g2

A

F 4
π

τ1 · τ2

∫

p

p2 − k2

ω+ ω−(ω+ + ω−)
− 1

8F 4
π

τ1 · τ2

∫

p

(ω+ − ω−)2

ω+ ω−(ω+ + ω−)

− g4
A

2F 4
π

∫

p

ω2
+ + ω+ ω− + ω2

−

ω3
+ ω

3
−(ω+ + ω−)

[
τ1 · τ2 (p2 − k2)2+6 σ1 · (k× p) σ2 · (k× p)

]
.

The set of time-ordered diagrams, associated with the loop-corrections to the LO

contact interaction illustrated in panel g) of Fig. 7, is represented in Fig. 11. We find

that the irreducible diagrams—panels a) and b) in Fig. 11—account for the following

contribution to the NN potential

virr
g =

g2
A

3F 2
π

τ1 · τ2 [CS σ1 · σ2 + CT (3 + 2 σ1 · σ2)]

∫

p

p2

ω3
p

, (62)

where ωp =
√
p2 +m2

π is the energy of the exchanged virtual pion. Recoil corrections

to the reducible diagrams shown in panels c)-f) of Fig. 11 amount to

vrec
g = − g2

A

3F 2
π

τ1 · τ2 [CS σ1 · σ2 + CT (3− 2 σ1 · σ2)]

∫

p

p2

ω3
p

, (63)
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p

a) b) f)e)d)c)

FIG. 11: Complete set of time-ordered diagrams for the loop corrections to the LO
contact potential. Irreducible diagrams are shown in panels a) and b), while reducible
diagrams are shown in panels c)-f). Notation is as in Fig. 1.

and the complete expression for the loop corrections to the LO contact interaction

is again obtained by summing the irreducible and recoil corrected reducible contri-

butions, given in Eq. (62) and Eq. (63), respectively,

vg = virr
g + vrec

g =
4 g2

A

3F 2
π

CT τ1 · τ2 σ1 · σ2

∫

p

p2

ω3
p

. (64)

We now turn our attention to the contributions represented by the diagrams

illustrated in panels h) and i) of Fig. 7. These diagrams have both reducible and

irreducible parts. The former are shown in Fig. 12 and describe interactions among

“dressed nucleons” involving self-energy corrections. We do not take into account

recoil corrections arising from the pion emitted and reabsorbed by the same nucleon.

In particular, we find the irreducible contributions illustrated in panel h) of Fig. 7 to

be

virr
h (k) = − g

4
A

F 4
π

τ1 · τ2

ω2
k

σ1 · k σ2 · k
∫

p

p2

(
3

ω2
p ωk

+
1

3ω3
p

)
, (65)

where ωk is the known energy of the pion exchanged by the two nucleons, and ωp is

the energy of the pion in the loop. The recoil corrections to the reducible diagram

of panel a) in Fig. 12 are obtained by expanding only the energy denominator of the

intermediate state with the pion exchanged by the two nucleons:

vrec
h (k) =

g4
A

F 4
π

τ1 · τ2

ω2
k

σ1 · k σ2 · k
∫

p

p2 3

ω2
p ωk

, (66)

and the complete expression for the loop corrections to the OPEP is

vh(k) = virr
h (k) + vrec

h (k) = − g4
A

3F 4
π

τ1 · τ2

ω2
k

σ1 · k σ2 · k
∫

p

p2

ω3
p

. (67)
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a) b)

FIG. 12: Reducible diagrams involving nucleon’ “self-energy” corrections. Notation
is as in Fig. 1. Only one among the possible time-ordered diagrams is shown.

Lastly, for diagram i) we retain the irreducible part only of panel b) in Fig. 12,

and obtain

vi ≡ virr
i =

g2
A

F 2
π

(3CS − CT σ1 · σ2)

∫

p

p2

ω3
p

. (68)

The χEFT nuclear potential up to order Q2 has also been derived by van Kolck

et al. in Ref. [2] and by Epelbaum et al. in Ref. [3]. The former group utilized the

standard TOPT formulation adopted in the present work. They explicitly considered,

in addition to pion and nucleon interactions, also those involving the ∆-isobar degree

of freedom. The results obtained in that work for the TPE contributions associated

with the diagrams in panels d) and e) of Fig. 7 agree with those reported here. As per

the amplitude related to the TPE diagram in panel f) of Fig. 7, the special treatment

reserved in this work to the reducible contributions leads to a result which differs

from that derived in Ref. [2]. The two expressions are in agreement if we retain only

irreducible contributions.

Epelbaum and collaborators derived the nuclear potential in TOPT in combina-

tion with a unitary transformation that decouples, in the Hilbert space of nucleons

and pions, the states consisting of nucleons only from those containing, in addition,

pions [3]. This approach is referred to as the unitary transformation method, or pro-

jection formalism. It is interesting to note that, at least at the order we investigated

so far, the unitary transformation method and TOPT with the additional prescrip-

tion of accounting for recoil corrections to reducible terms are equivalent. This is true

for the amplitudes implied by the diagrams illustrated in panels a)–g) of Fig. 7. Our

approach leads to results which differ from those reported in Ref. [3] when applied
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to the evaluation of amplitudes associated with ‘self-energy’ contributions, like those

represented in panels h) and i) of Fig. 7. However, as it will become clear in the next

section, these differences—for diagrams h) and i)—do not affect the definition of the

renormalized potential, since they only lead to differences in the renormalization of

the LECs CS, CT , and gA.

III.2 RENORMALIZATION OF THE NN POTENTIAL

The potential defined in the previous section contains ultraviolet divergences which

need to be removed by a proper renormalization procedure. In order to isolate these

divergences, loop integrals (or kernels) of the N2LO contributions have been regular-

ized with the dimensional regularization scheme [18, 20]. This scheme is commonly

used within the χEFT framework since, being a momentum cutoff independent pre-

scription, it preserves the power counting. In practice, we evaluated the three mo-

mentum loop integrals in dimension d = 3− ǫ as shown below

∫

p

=

∫
d3 p

(2π)3
→
∫
d(3−ǫ)p

(2π)3
µǫ , (69)

where µ is a renormalization scale introduced to preserve physical dimensions. As

d → 3, or ǫ → 0+, the integral becomes singular but its divergent content is easily

identified with the parameter ǫ, and reabsorbed, order by order, by the LECs en-

tering the theory. The latter are then constrained by the experimental data. The

regularized kernels are obtained by studying the asymptotic behavior of the corre-

sponding d-dimensional integrals for ǫ→ 0+. They have been derived in Appendix C

where we report the relevant integration formulae and list the expressions of the reg-

ularized loop-integrals. Here we sketch the renormalization procedure of the various

contributions, and give the final expression for the renormalized NN potential.

As an example, we discuss, in some detail, the regularization of the two-pion-

exchange contribution of Eq. (61). In terms of the kernels L(k), I(2n)(k) and J (2n)(k)

defined in Appendix C, it reads as

v2π(k) = − 1

8F 4
π

τ1 · τ2

[
L(k)− 8 g2

A

[
I(2)(k)− k2I(0)(k)

]
+ 4 g4

A

[
J (4)(k)

− 2 k2J (2)(k) + k4J (0)(k)
]]
− 3 g4

A

F 4
π

(σ1 × k)i(σ2 × k)j J
(2)
ij (k). (70)
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By inserting the explicit expressions of these kernels in the previous equation, we

obtain

v2π(k) = v2π(k) + τ1 · τ2 P2(k) +
(
k2

σ1 · σ2 − σ1 · k σ2 · k
)
P0 , (71)

where the renormalized finite part of the TPE potential, denoted by v2π(k), is given

by

v2π(k) =
1

48π2 F 4
π

τ1 · τ2G(k)

[
4m2

π(1 + 4g2
A − 5g4

A)

+ k2(1 + 10g2
A − 23g4

A)− 48 g4
Am

4
π

4m2
π + k2

]

+
3 g4

A

8π2 F 4
π

G(k)
(
k2

σ1 · σ2 − σ1 · kσ2 · k
)
, (72)

with the loop function G(k) defined as

G(k) =

√
4m2

π + k2

k
ln

√
4m2

π + k2 + k√
4m2

π + k2 − k
. (73)

The divergences isolated by the dimensional regularization scheme are lumped

into the polynomials P2(k) (of order two) and constant P0:

P2(k)=−
1

24π2 F 4
π

[
m2

π

[
4 + 22g2

A − 29g4
A − 9g2

A(2− 5g2
A)
(
− 2

ǫ
+ γ − ln π + ln

m2
π

µ2

)]

+
4

3
k2
[
1 + 7g2

A − 9g4
A −

3

8
(1 + 10g2

A − 23g4
A)
(
− 2

ǫ
+ γ − ln π + ln

m2
π

µ2

)]]
, (74)

P0 =
3 g4

A

8π2 F 4
π

(
−2

ǫ
+ γ − ln π + ln

m2
π

µ2
− 4

3

)
. (75)

where the parameter ǫ → 0+, γ is the Euler-Mascheroni constant, and µ is the

renormalization scale brought in by dimensional regularization. The isospin struc-

ture τ1 · τ2 multiplying the polynomial P2(k)—Eq. (71)—can be reduced by Fierz

rearrangement [22] so as to match structures occurring in the LO vCT0 and N2LO

vCT2(k,K) contact contributions. A heuristic derivation exploits the antisymmetriza-

tion of the two-nucleon states. If P12, P
σ
12, and P τ

12 denote respectively the space,

spin, and isospin exchange operators, where

P σ
12 =

1 + σ1 · σ2

2
, (76)
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and similarly for P τ
12, then P12 P

σ
12 P

τ
12 = −1 for a two-nucleon state. Thus the isospin

structure τ1 · τ2 can be written as follows

τ1 · τ2 = −2P σ
12 P12 − 1 = −2− σ1 · σ2 . (77)

Similarly, the term τ1 · τ2 k
2 is reduced to

τ1 · τ2 k
2 = −2P σ

12 P12 k
2 − k2 = −4 (1 + σ1 · σ2)K

2 − k2 , (78)

where we used P12 k
2 = 4K2, which follows from the consideration that on exchang-

ing the momenta of the nucleons p1 ⇋ p2, the relative momentum p→ −p.

We can now utilize the relations given in Eqs. (77) and (78) to reduce the isospin

structures multiplying the polynomial P2(k). In particular, the momentum indepen-

dent terms in P2(k) redefine the values of the LECs entering the contact potential

at LO, i.e. vCT0 given in Eq. (38), while those which depend on k2 contribute to

the renormalization of the LECs entering the contact potential at N2LO, that is

vCT2(k,K) of Eq. (42). The renormalization constant P0 is instead reabsorbed by

the LECs entering the contact potential at N2LO, since it multiplies structures which

depend quadratically on the relative momentum k—see Eq. (71). Specifically, the

terms in P0 and P2(k) renormalize the LECs CS, CT , C1, C2, C4 and C6. For example,

the last term of Eq. (71) is absorbed by the redefinition,

C6 = C6 +
3g4

A

8π2F 4
π

µ−ǫ

(
−2

ǫ
+ γ − lnπ + ln

m2
π

µ2
− 4

3

)
. (79)

Note that the renormalized C6 remains µ-independent, as becomes obvious by taking

the logarithmic derivative with respect to µ and neglecting O(ǫ) terms. For ease

of notation, we will omit the overline and tacitly imply that the LECs have been

properly renormalized.

The contributions in Eqs. (64), (67), and (68) lead to further renormalization

of the LECs CS and CT , as well as the axial coupling constant gA entering the LO

OPEP:

vg + vi =
4 g2

A

3F 2
π

CT τ1 · τ2 σ1 · σ2 M
(3) +

g2
A

F 2
π

(3CS − CT σ1 · σ2)M
(3) , (80)

v h(k) = − g4
A

3F 4
π

τ1 · τ2
σ1 · k σ2 · k

ω2
k

M (3) , (81)

where the renormalization constants M (n) are listed in Appendix C. The complete

renormalized NN potential up to N2LO included is then given as

v(k,K) = vCT0 + vπ(k) + vCT2(k,K) + v2π(k) , (82)
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where vCT0, vπ, vCT2, and v2π are defined in Eqs. (38), (39), (42), and (72), respec-

tively, and the overline indicates that the LECs gA and some of the C ′
i have been

renormalized.

III.3 DETERMINING THE LECS: FITTING THE N2LO POTENTIAL

The NN potential defined in Sec. III.2 involves nine unknown LECs associated with

the contact interactions entering at LO (CS and CT ) and N2LO (Ci, i = 1, . . . , 7).

We determine these LECs by fitting phase-shifts obtained in the very recent (2008)

analysis of np scattering data by Gross and Stadler [23]. To this end, we formulate

the NN scattering- and bound-state problems in momentum space [24]. In the case

of scattering, we solve for the K-matrix

KJTS
L′,L (p′, p) = vJTS

L′,L (p′, p) +
4µN

π

∫ ∞

0

dkk2
∑

L′′

vJTS
L′,L′′(p′, k)

P
p2 − k2

KJTS
L′′,L(k, p) , (83)

where µN is the reduced mass of the two nucleon system, and P denotes a principal-

value integration. The momentum-space matrix elements vJTS
L′,L (p′, p) are obtained

by projecting out the N2LO potential into states with definite orbital angular mo-

mentum L, total spin S, and total angular momentum J , for each isospin channel

corresponding to T = 0, 1 [25]. The integral equations above are discretized, and the

resulting systems of linear equations are then solved by direct numerical inversion.

The principal-value integration is removed by a standard subtraction technique [26].

Once the K-matrices in the various channels have been determined, the correspond-

ing (on-shell) S-matrices are obtained from

SJTS(p) =
[
1 + 2 i µNpK

JTS(p, p)
]−1 [

1− 2 i µNpK
JTS(p, p)

]
, (84)

from which phase shifts and, for coupled channels, mixing angles are determined [25].

In particular, the phase shifts δJSL in single channels (L = J) are related to the S-

matrix via

SJTS = ei 2δJSL, (85)

while in the coupled channels (S = 1 and L = J ± 1) the S-matrix is represented in

terms of the mixing angle ǫJ , along with the phase shifts δ± = δJ1J±1 and reads

SJTS =

(
ei 2δ− cos(2ǫJ) i ei (δ−+ δ+) sin(2ǫJ)

i ei (δ−+ δ+) sin(2ǫJ) ei 2δ+ cos(2ǫJ)

)
.
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TABLE 3: Values for the nucleon axial coupling constant gA, pion decay constant
Fπ, neutral and charged pion masses m0 and m+, (twice) np reduced mass µN , and
~c, used in the fits.

gA Fπ (MeV) m0 (MeV) m+ (MeV) 2µN (MeV) ~c (MeV-fm)
1.29 184.8 134.9766 139.5702 938.9181 197.32696

The bound state (with JTS = 101 and L,L′ = 0, 2) is obtained from solutions of

the homogeneous integral equations [24]

wL(p) =
1

Ed − p2/(2µN)

2

π

∫ ∞

0

dk k2
∑

L′

v101
L,L′(p, k)wL′(k) , (86)

where Ed denotes the bound state energy. From the previous equation the

configuration-space S- and D-wave components follow as

uL(r) =
2

π

∫ ∞

0

dp p2 jL(pr)wL(p) . (87)

Before turning our attention to a discussion of the phase-shift fits, we note that the

potential v(k,K) defined in Eq. (82) needs to be further regularized, since it behaves

quadratically in the momenta k and/or K. The regularization is accomplished by

including a high-momentum cutoff, which is conveniently chosen to be of the form

CΛ(k,K) = e−(k4+16 K4)/Λ4

, (88)

and the matrix elements of the regularized potential entering the K-matrix and

bound-state equations are obtained from

vR(k,K) = v(k,K)CΛ(k,K) . (89)

The regulator defined in Eq. (88) involves momenta to the forth power. This choice

does not spoil the power counting of the present potential (of order Q2), since it

generates spurious contributions of order ∼ Q4.

The parameters, utilized in the fitting procedure, and characterizing the OPE

and TPE parts of the potential are listed in Table 3, with the nucleon axial coupling

constant gA determined from the Golberger-Treiman relation gA = gπNNFπ/(2mN),

which relates it to the πNN coupling constant gπNN . The latter is taken to have the
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value g2
πNN/(4π) = 13.63± 0.20 [27, 28]. In fact, in the OPE we include the isospin-

symmetry breaking induced by the mass difference between charged and neutral

pions, since it leads to significant effects in the 1S0 scattering length [11], and therefore

the OPEP reads

vπ(k) = − g2
A

3F 2
π

[
τ1 · τ2

(
1

k2 +m2
0

+
2

k2 +m2
+

)

+ T12

(
1

k2 +m2
0

− 1

k2 +m2
+

)]
σ1 · kσ2 · k , (90)

where T12 is the isotensor operator defined as T12 = 3 τ1,zτ2,z − τ1 · τ2, and m0 and

m+ are the neutral and charged pions masses. Finally, we note that the pion mass

entering in the TPE part—Eq. (72)—is taken as mπ = (m0 + 2m+)/3.

The LECs CS, CT , and Ci, i = 1, . . . , 7, are determined by fitting the deuteron

binding energy and np S- and P-wave phase shifts up to 100 MeV lab energies. The

fitting strategy becomes obvious once the partial wave expansion of the potential is

carried out. In the case of spin-singlet (S = 0) channels, the contact components of

the partial-wave expanded potential with JT and S = 0 read:

vJT0
J,J (p′, p; CT0/2) =

1

8π

∫ 1

−1

dz PJ(z)
[
D1 +D2 (p′ 2 + p2)− 2D3 p

′ p z
]
CΛ(p′, p, z) ,

(91)

where z = p̂′ · p̂, PJ(z) is a Legendre polynomial, and the Di denote linear combina-

tions of the LECs with D1 = CS − 3CT , D2 = C1 − 3C3 − C6 + (C2 − 3C4 −C7)/4,

and D3 = C1− 3C3−C6− (C2− 3C4−C7)/4. The cutoff function is even in z, and

therefore for even (odd) J only D1 and D2 (D3) contribute. In practice, D1 and D2

have been determined by fitting the (np) singlet scattering length (as) and effective

range (rs), and 1S0 phase shift, while D3 is determined by fitting the 1P1 phases.

In the case of spin-triplet (S = 1) channels, the situation is slightly more compli-

cated. For uncoupled channels with J > 0, we write

vJT1
J,J (p′, p; CT0/2) = − 1

8π

∫ 1

−1

dz

[[
PJ−1(z) + PJ+1(z)

]
(2D8 +D9) p

′ p

−PJ (z)
[
D4 + (D5 +D6) (p′ 2 + p2)− 2 (D7 −D8 −D9) p

′ p z
]]
CΛ(p′, p, z), (92)
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TABLE 4: Values of the LECs corresponding to cutoff parameters Λ in the range
500–700 MeV, obtained from fits to np phase shifts up to lab energies of 100 MeV.

Λ (MeV)
500 600 700

CS (fm2) -4.456420 -4.357712 -3.863625
CT (fm2) 0.034780 0.094149 0.234176
C1 (fm4) -0.360939 -0.259186 -0.268296
C2 (fm4) -1.460509 -0.934505 -0.835226
C3 (fm4) -0.349780 -0.359547 -0.389047
C4 (fm4) -1.968636 -1.717178 -1.724544
C5 (fm4) -0.870067 -0.754021 -0.695564
C6 (fm4) 0.326169 0.301194 0.348152
C7 (fm4) -0.727797 -1.006459 -0.955273

while for the 3P0 channel (having JTS = 011)

v011
1,1 (p′, p; CT0/2) =

1

8π

∫ 1

−1

dz

[
P0(z) (2D8 −D9) p

′ p

+P1(z)
[
D4 + (D5 −D6) (p′ 2 + p2)− (2D7 −D9) p

′ p z
]]
CΛ(p′, p, z) .(93)

Here, the Di’s denote the following LEC combinations: D4 = CS + CT , D5 = C1 +

C3 + (C2 + C4)/4, D6 = C6 + C7/4, D7 = C1 + C3 − (C2 + C4)/4, D8 = C6 − C7/4,

and D9 = C5. In terms of these, the contact components for coupled channels are

given by

vJT1
−− (p′, p; CT0/2) = − 1

8π

∫ 1

−1

dz

[
PJ(z)

(
2D8

2J + 1
+D9

)
p′ p

−PJ−1(z)
[
D4+

(
D5 +

D6

2J + 1

)
(p′ 2 + p2)−(2D7 −D9) p

′ p z
]]
CΛ(p′, p, z), (94)

vJT1
++ (p′, p; CT0/2) =

1

8π

∫ 1

−1

dz

[
PJ(z)

(
2D8

2J + 1
−D9

)
p′ p

+PJ+1(z)
[
D4+

(
D5 −

D6

2J + 1

)
(p′ 2 + p2)−(2D7 −D9) p

′ p z
]]
CΛ(p′, p, z), (95)
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vJT1
+− (p′, p; CT0/2) = − 1

4π

√
J(J + 1)

2J + 1

∫ 1

−1

dz

[
D6

[
PJ−1(z) p

′ 2 + PJ+1(z) p
2
]

− 2D8 PJ(z) p′ p

]
CΛ(p′, p, z) , (96)

where L = ± is a shorthand for L = J ± 1, and the off-diagonal matrix element

with −+ is obtained from vJT1
+− (p′, p; CT0/2) by exchanging p′ ⇋ p. The parameters

D4, D5 and D6 are then determined by fitting the deuteron binding energy (Ed),

spin-triplet scattering length (at) and effective range (rt), and 3S1-
3D1 phases and

mixing angle ǫ1—the contributions of terms proportional to D7, D8, and D9 vanish

in this channel. On the other hand, only the latter enter into the 3PJ=0,1,2 channels,

and the associated phases can then be used to fit D7, D8, and D9.
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FIG. 13: The S-wave np phase shifts, obtained with cutoff parameters Λ=500, 600,
and 700 MeV, are denoted by dash (red), dot-dash (green), and solid (blue) lines,
respectively. The filled circles represent the phase-shift analysis of Ref. [23].

In our fits to the np-phase shifts, the cutoff parameter Λ varies in the range of 500–

700 MeV. The NN potential defined in Sec. III.2 includes up to TPE contributions.

Choosing the cutoff parameter Λ to vary in the range defined above corresponds to

removing contributions of range & 2mπ. The short range behavior of the potential is
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FIG. 14: Same as in Fig. 13, but for P-wave phase shifts.

represented by a set of contact terms. As already mentioned, we fit up to laboratory

kinetic energies of 100 MeV, in a regime where the present χEFT formulation is

expected to be valid.

In Table 4 we list the best-fit values obtained for the LECs for Λ=500, 600, and

700 MeV. The results for the S- and P-wave phases used in the fits, as well as for

the D-wave and peripheral F- and G-wave phases, and mixing angles ǫJ=1,...,4 are

displayed in Figs. 13–18 up to 200 MeV lab kinetic energies, while effective range

expansions and deuteron properties are listed in Table 5. In Figs. 13 and 14 we

show the fits to the S- and P-wave phase shifts. Of course, beyond lab energies of

100 MeV the results shown in the figures are not constrained by the fits, and hence

represent predictions, although the validity of the χEFT to order Q2 in this regime

maybe questionable.

In Figs. 15–18 we show the predictions for the D-, F-, and G-wave phase shifts,

and mixing angles ǫJ=1,2,3,4. For reference, in Figs. 15–18, following the original work
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FIG. 15: Same as in Fig. 13, but for D-wave phase shifts. The dash-double-dot (or-
ange) line is obtained in first order perturbation theory for the T -matrix by including
only the one- and two-pion-exchange parts of the N2LO potential.

by Kaiser et al. [29], the phases obtained by including only the one- and two-pion-

exchange (vπ and v2π, respectively) terms of the potential are also shown. These

have been calculated in first order perturbation theory on the T -matrix, and hence

are cutoff independent. The D-, F-, and G-wave phases and the mixing angles show

a significant cutoff dependence In particular, the F- and G-wave phases, while small

because of the centrifugal barrier, nevertheless display a pronounced sensitivity to

short-range physics. Beyond 100 MeV, the agreement between the calculated and

experimental phases is generally poor, and indeed in the 3D3 and 3F4 channels they

have opposite sign. Overall, the quality of the fits at N2LO is comparable to that

reported in Refs. [12, 25] and, more recently, in Ref. [30]. There are indications [31]

that inclusion of explicit ∆-isobar degrees of freedom might reduce the sensitivity to

the cutoff. There are also indications [25] that including the N3LO (Q4) corrections

improves the agreement between the experimental and theoretical phase shifts. The

N3LO corrections include contributions arising from heavy meson exchanges and ∆-

isobar excitations.
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FIG. 16: Same as in Fig. 15, but for F-wave phase shifts.

The scattering lengths are well reproduced by the fits (within ∼ 1% of the data,

see Table 5), however, the singlet and triplet effective ranges are both significantly

underpredicted, by ∼ 10% and ∼ 5% respectively.

The deuteron S- and D-wave radial wave functions are shown in Fig. 19 along

with those calculated with the Argonne v18 (AV18) potential [11]. The D wave is

particularly sensitive to variations in the cutoff: it is pushed in as Λ is increased

from 500 to 700 MeV, but remains considerably smaller than that of the AV18 up

to internucleon distances of ∼ 1.5 fm, perhaps not surprisingly, since this realistic

potential has a strong tensor component at short range. The static properties, i.e.

D- to S-state ratio, mean-square-root matter radius, and magnetic moment—the

binding energy is fitted—are close to the experimental values, and their variation

with Λ is quite modest. The quadrupole moment is underpredicted by ∼ 4%, a

pathology common, to the best of our knowledge, to all realistic potentials (including

the AV18).
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FIG. 17: Same as in Fig. 15, but for G-wave phase shifts.
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FIG. 19: The S-wave and D-wave components of the deuteron, obtained with cutoff
parameters Λ=500, 600, and 700 MeV and denoted by dash (red), dot-dash (green),
and solid (blue) lines, respectively, are compared with those calculated from the
Argonne v18 potential (dash-double-dot black lines).

TABLE 5: Singlet and triplet np scattering lengths (as and at) and effective ranges
(rs and rt), and deuteron binding energy (Bd), D- to S-state ratio (ηd), root-mean-
square matter radius (rd), magnetic moment (µd), quadrupole moment (Qd), and
D-state probability (PD), obtained with Λ=500, 600, and 700 MeV, are compared
to the corresponding experimental values (as, rs, at, and rt from Ref. [32], Bd from
Ref. [33], ηd from Ref. [34], rd and µd from Ref. [35], Qd from Ref. [36]).

Λ (MeV)
500 600 700 Expt

as (fm) -23.729 -23.736 -23.736 -23.749(8)
rs (fm) 2.528 2.558 2.567 2.81(5)
at (fm) 5.360 5.371 5.376 5.424(3)
rt (fm) 1.665 1.680 1.687 1.760(5)

Bd (MeV) 2.2244 2.2246 2.2245 2.224575(9)
ηd 0.0267 0.0260 0.0264 0.0256(4)

rd (fm) 1.943 1.947 1.951 1.9734(44)
µd (µN) 0.860 0.858 0.853 0.8574382329(92)
Qd (fm2) 0.275 0.272 0.279 0.2859(3)
PD (%) 3.44 3.87 4.77



44

III.4 CONTACT POTENTIAL IN A> 2 SYSTEMS

So far, we have derived the NN potential in the center-of-mass frame. In a general

frame, though, in which the NN pair has total momentum P = p1+p2 = p′
1+p′

2 6= 0,

the potential implied by the contact interaction Hamiltonians listed in Eqs. (239)–

(247), consists of the contribution vCT2(k,K) of Eq. (42), plus an additional term,

vCT2
P (k,K), which depends on the total pair momentum P. The N2LO contact po-

tential is easily obtained by summing up the contributions arising from the individual

contact terms listed in Eqs. (287)–(295) of Appendix B.3. We express the individual

nucleon momenta pi and p′
i, with i = 1, 2, in terms of the momenta k, K, and P as

indicated below

p1 =
1

2
(P− k) + K, p2 =

1

2
(P + k)−K,

p′
1 =

1

2
(P + k) + K, p′

2 =
1

2
(P− k)−K. (97)

Thus, contributions which depend only on the momenta k and K give rise to the po-

tential vCT2(k,K) of Eq. (42), while those which depend also on the total momentum

P lead to the following potential

vCT2
P (k,K) = i C∗

1

σ1 − σ2

2
·P× k + C∗

2 (σ1 ·P σ2 ·K− σ1 ·K σ2 ·P)

+ (C∗
3 + C∗

4 σ1 · σ2)P
2 + C∗

5 σ1 ·P σ2 ·P , (98)

where the C∗
i ’s are expressed in terms of the following LECs combinations

C∗
1 = C ′

5/2 + C ′
6/2 ,

C∗
2 = 2C ′

7 − 2C ′
8 − C ′

10 + C ′
11 ,

C∗
3 = −C ′

1 + C ′
2/2− C ′

3 , (99)

C∗
4 = −C ′

9 + C ′
12/2 + C ′

14 ,

C∗
5 = −C ′

7/2− C ′
8/2 + C ′

10/4 + C ′
11/4 + C ′

13 .

We also observe that Eqs. (43) and (99) provide a one-to-one correspondence between

the LECs and the coefficients of the NN contact potential.

In a two-body system, one can chose the frame with P = 0, in which vCT2
P

vanishes. However, in a nucleus with three or more nucleons, the center-of-mass of

a nucleon pair will in general have motion with the respect to the center-of-mass of

the whole nucleus, therefore this contribution needs to be included.
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In Ref. [21], we argued that these P-dependent terms represent relativistic cor-

rections to the leading order contact potential vCT0. The general relation between

the relativistic boost correction δv(P) and the center-of-mass rest-frame interaction

v has been obtained by Foldy/Krajcik [37] and by Friar [38], exploiting general prin-

ciples of relativistic mechanics. In particular, by requiring that the commutation

relations of the Poincaré group generators are satisfied, the boost correction up to

order P 2/m2
N , is obtained from [37, 39]

δv(P) = − P 2

8m2
N

v +
i

8m2
N

[P · r P · p , v] +
i

8m2
N

[(σ1 − σ2)×P · p , v] , (100)

where r and p are the relative position and momentum operators, respectively. These

terms have a simple physical interpretation [39]: the first arises from the relativistic

energy-momentum relation, the second from Lorentz contraction, and the third from

Thomas precession of the spins.

Indeed, evaluation of the above commutators with v = vCT0 leads in momentum

space to

δv(P) = i
CS − CT

4m2
N

σ1 − σ2

2
·P× k +

CT

2m2
N

(σ1 ·P σ2 ·K− σ1 ·K σ2 ·P)

− (CS + CT σ1 · σ2)
P 2

4m2
N

, (101)

where we kept terms up to order Q2, and assumed P ∼ k ∼ K ∼ Q.

In Ref. [40], we demonstrated that the relation given in Eq. (100) remains valid in

a χEFT formulation, and established relations between C∗
i and CS and CT , namely

C∗
1 =

CS − CT

4m2
N

, C∗
2 =

CT

2m2
N

, C∗
3 = − CS

4m2
N

, C∗
4 = − CT

4m2
N

, C∗
5 = 0 . (102)

It is important to note that boost corrections to the LO potential—including those

to the OPEP which can be generated via Eq. (100)—have not been studied in χEFT

calculations of binding energies and scattering observables in system with A > 2.

However, they have been evaluated for the case of realistic potentials in the A = 3

and 4 binding energies, where they have been found to give, respectively, about 400

keV and 1.9 MeV repulsive contributions [39], as well as in three-nucleon scattering

observables [41], where, in particular, they have led to an increase of the discrepancy

between theory and experiment in the nd vector analyzing power.
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CHAPTER IV

ELECTROMAGNETIC CURRENTS IN χEFT

We now turn our attention to the derivation of the electromagnetic current. Ac-

cording to the power-counting scheme, the LO term results from the coupling of the

external photon field to the individual nucleons, and is counted as eQ−2, where a

factor eQ is from the γNN vertex, and a factor Q−3 follows from the momentum

δ-function implicit in the disconnected diagrams, see panel a) of Fig. 20. Higher

a) b) c) d)

p1 + k1

p1 p2

p1 + k1 p2 + k2

p1 p2

q

FIG. 20: Currents up to N2LO. Nucleons, pions, and photons are denoted by solid,
dashed, and wavy lines, respectively. The filled circle in panel d) represents the
(Q/mN )2 relativistic correction to the LO one-body current illustrated in panel a).

order terms are suppressed by additional powers of Q. In Sec. IV.1 we discuss the

contributions occurring up to N2LO, while the contributions entering at N3LO are

derived in Sec. IV.2. In Sec. IV.4 we explicitly verify that the present formulation,

based on TOPT with the additional prescription introduced to account for recoil cor-

rections to the reducible diagrams, leads to currents which are conserved and hence

consistent with the N2LO potential derived in Sec. III.

IV.1 CURRENTS UP TO N2LO

The electromagnetic current up to N2LO is represented in Fig. 20, where we also

show the kinematic of the process under study. Specifically, q denotes the external

photon momentum, and the partial momenta are defined as

ki = p′
i − pi , Ki = (p′

i + pi)/2 , (103)

where pi and p′
i are the initial and final momenta of nucleon i = 1, 2. In the remainder

of this section we will refer to the panels of Fig. 20.
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The LO contribution, implied by the electromagnetic interaction Hamiltonian of

Eq. (269), is given by the one-body current of panel a)

jLO
a =

e

2mN

[
2 eN,1 K1 + i µN,1 σ1 × q

]
+ 1 ⇋ 2 , (104)

where the photon momentum q is equal to the partial momentum transfered to

nucleon i, q = ki, and mN denotes the nucleon mass. We recall the definitions of eN

and µN :

eN = (1 + τz)/2 , κN = (κS + κV τz)/2 , µN = eN + κN , (105)

where κS and κV are the isoscalar and isovector combinations of the anomalous

magnetic moments of the proton and neutron (κS = −0.12 n.m. and κV = 3.706

n.m.).

The contributions at NLO, eQ−1, are represented by the diagrams in panels b)

and c). A straightforward evaluation of these diagrams in the static limit leads to

the expressions

jNLO
b = −i e g

2
A

F 2
π

(τ1 × τ2)zσ1
σ2 · k2

ω2
k2

+ 1 ⇋ 2 , (106)

jNLO
c = i e

g2
A

F 2
π

(τ1 × τ2)z
k1 − k2

ω2
k1
ω2

k2

σ1 · k1 σ2 · k2 , (107)

where, as usual, a δ-function representing the overall momentum conservation has

been dropped. The latter follows from the momentum conservation at each of the

vertex in the diagram. In particular, the momenta transferred to nucleons 1 and 2

add up to q, k1 + k2 = q. Note that the expressions given above are the seagull and

pion-in-flight currents commonly used in the literature.

The N2LO current is represented by the one-body contribution shown in panel d),

and is due to (Q/mN)2 relativistic corrections to the one-body current in Eq. (104).

These are easily derived from a non-relativistic expansion of Eq. (271)

jN
2LO

d = − e

8m3
N

eN,1

[
2
(
K2

1 + q2/4
)
(2K1 + iσ1 × q) + K1 · q (q + 2iσ1 ×K1)

]

− i e

8m3
N

κN,1

[
K1 · q (4 σ1 ×K1 − iq)− (2 iK1 − σ1 × q) q2/2

+2 (K1 × q) σ1 ·K1

]
+ 1 ⇋ 2 . (108)
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a) b)

FIG. 21: NLO and N2LO corrections to the one-body current. Notation is as in
Fig. 20.

At NLO, and N2LO, there are additional contributions coming from one-loop

corrections to the one-body current, see Fig. 21. Diagrams of this kind give rise to

contributions to the radius and anomalous magnetic moments of the nucleons. We

assume them to be absorbed in the experimental values for these quantities, utilized

to construct the LO one-body current operator.

IV.1.1 Recoil Corrections: Cancellations at N2LO

Recoil corrections play an important role also in the evaluation of the current opera-

tor. In particular, we observe that recoil corrected reducible contributions at N2LO

(N3LO) exactly (partially) cancel irreducible terms at the same order. In the present

formulation based on TOPT, there is in principle the additional N2LO current arising

from the evaluation of the time-ordered diagrams represented in Fig. 22. Diagrams

in panel a) and b) are irreducible and give the following contribution

jN
2LO

irr =
VγNN (1,q)VπNN(2,k)VπNN(1,k)

ω2
k

+ h.c. = − jLO
a

vπ(k)

2ωk

+ h.c. , (109)

where VγNN (i,q) denotes the vertex from the one-body—or LO—electromagnetic in-

teraction Hamiltonian relative to nucleon i, and a photon with momentum q, jLO
a is

the current operator defined in Eq. (104), and vπ(k) is the static OPEP of Eq (39).

Evaluation of the reducible diagrams of panel c) and d) leads to the following con-

tribution

jN
2LO

red =
VγNN(1,q)VπNN(1,k)VπNN(2,k)

Ei−Ẽ1 −E ′
2−ωq + iη

[
1

Ei−Ẽ1− E2− ωq− ωk + i η

+
1

Ei−E1−E ′
2− ωq− ωk + i η

]
, (110)
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q

a)

p′1 p′2

p1 p2

−kk

p̃1

b) c) d)

f)e)

FIG. 22: Time-ordered diagrams illustrating the cancellation of the irreducible con-
tributions a) and b) by the recoil corrections to the LO diagrams c)-f). Notation is
as in Fig. 20.

and the labeling of momenta is as illustrated in the figure. The initial and final

energies of the system Ei and Ef (Ei = Ef ) are Ei=E1 +E2 + ωq and Ef=E
′
1 +E ′

2,

where ωq is the energy of the external photon. The energy of the intermediate

nucleon is denoted with Ẽ1. These energies, including the photon energy in the

initial state, are all suppressed by Q/M relative to ωk ∼ Q, therefore we can expand

the denominators in square brackets as we did for the energy denominators entering

reducible box diagrams—see Eq. (52)

[
. . .

]
≃ − 2

ωk

− Ei − Ẽ1 − E ′
2 − ωq

ω2
k

, (111)

so that the reducible contribution of diagrams c)+d) now reads

jN
2LO

red = VγNN(1,k)
1

Ei−Ẽ1 −E ′
2−ωq + i η

vπ(k)− VγNN (1,k)VπNN(1,k)VπNN(2,k)

ω2
k

= jLO
a

1

Ei−Ẽ1 −E ′
2−ωq + i η

vπ(k) + jLO
a

vπ(k)

2ωk

. (112)

The first term in the equation above is accounted for when the LO one-body current

operator is evaluated in between wave functions solutions of the Lippman-Schwinger

equation with a static OPEP (see discussion below), while the second term represents
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the recoil corrected reducible contribution defined as

jN
2LO

rec = jLO
a

vπ(k)

2ωk
+ h.c. , (113)

where the h.c. term represents the contribution arising from the reducible diagrams

of panels e) and f) of Fig. 22. The complete current at N2LO, obtained by summing

the irreducible contribution of Eq. (109) to the expression above, is then seen to

vanish.

To interpret the first term of Eq. (112), consider the matrix element of the current

operator j between initial and final two-nucleon states

m.e. = 〈ψf | j | ψi〉 , (114)

where | ψ〉 satisfies the Lippmann-Schwinger equation,

| ψ〉 = | φ〉+ 1

E −H0 + i η
(vπ + δvπ) | ψ〉

= | φ〉+ 1

E −H0 + i η
(vπ + δvπ) | φ〉+ . . . , (115)

and | φ〉 is the unperturbed wave function solution of H0 | φ〉 = E | φ〉. The δvπ term

represents the recoil correction to the static OPEP, which can be easily obtained by

expanding the energy denominators entering the OPE transition amplitude in the

usual way and is given by

δvπ = −(Ei −H0)

ω2
k

VπNN(2,k)VπNN(1,k) + h.c. = (Ei −H0)
vπ

2ωk

+ h.c. . (116)

Insertion of the perturbed wave functions into the matrix element of Eq. (114), leads

to (for a single iteration)

〈ψf | j | ψi〉 = 〈φf | j | φi〉 + 〈φf | j
1

Ei −H0 − i η
vπ + h.c. | φi〉

+ 〈φf | j
vπ

2ωk

+ h.c. | φi〉 , (117)

where we keep terms linear in vπ and δvπ. Let us consider just the LO one-body

current and the N2LO irreducible current of Eq. (109), that is

j = jLO
a + jN

2LO
irr , (118)

then the matrix element of this current operator is

〈ψf | j | ψi〉 = 〈φf | jLO
a | φi〉 + 〈φf | jN

2LO
irr | φi〉

+ 〈φf | jLO
a

1

Ei −H0 − i η
vπ + h.c. | φi〉

+ 〈φf | jLO
a

vπ

2ωk
+ h.c. | φi〉 , (119)
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where terms up to N2LO are shown. In the previous equation, terms linear in vπ

reproduce the first term on the r.h.s. of Eq. (112) and the analogous one coming from

diagrams e) and f) of Fig. 22. These contributions are already accounted for when

the matrix element is evaluated between wave functions solution of the Lippman-

Schwinger equation with a static OPEP. The last two terms, which come from the

recoil correction to the static OPEP, exactly cancel the second term which arises from

the two-body current contribution represented in Fig. 22 panels a) and d). Thus,

if OPEP is taken in the static limit, as is the case for the calculations reported in

Sec. VI, then the contributions of diagrams a) and d) should not be retained, since

they are canceled by recoil corrections to OPEP. The discussion above shows that,

when one uses the static OPEP to generate the nuclear wave functions, then the

current operator derived by retaining both recoil corrected reducible and irreducible

contributions at each order, provides a better approximation than the corresponding

operator derived by retaining only irreducible terms.

So far, we have implicitly assumed that the intermediate states are eigenstates

of the free interaction Hamiltonian H0. In fact, the situation becomes more delicate

when the intermediate states describe fully interacting, rather than free, particles.

Let now |ϕ〉 denote a bound or continuum state corresponding to H0+vπ with energy

E, and let δvπ be the recoil correction to the static OPEP. To first order in δvπ, the

perturbed state |ψ〉 is

|ψ〉 =|ϕ〉+ 1

E −H0 − vπ
δvπ |ϕ〉 , (120)

and the matrix element of the current operator j = jLO
a + jN

2LO
irr between initial and

final states |ψi〉 and |ψf〉 can be expressed as

〈ψf | j | ψi〉 = 〈ϕf | j | ϕi〉+ 〈ϕf | j
1

Ei −H0 − vπ
δvπ + h.c. | ϕi〉 , (121)

where we have dropped terms of order N3LO and higher. We showed that, when

the nucleonic intermediate states are free particles, the recoil correction to the static

OPE potential is given by the expression reported in Eq. (116). If we assume that

the nucleonic intermediate states describe fully interacting particles, i.e. they are

eigenstates of H0+vπ, then it is plausible that the correction δvπ should be expressed

as

δvπ = (Ei −H0 − vπ)
vπ

2ω
+ h.c. , (122)



52

from which it follows that

〈ψf | j | ψi〉 = 〈φf | jLO
a | φi〉 + 〈φf | jN

2LO
irr | φi〉

+ 〈φf | jLO
a

1

Ei −H0 − vπ + i η
vπ + h.c. | φi〉

+ 〈φf | jLO
a

vπ

2ωk

+ h.c. | φi〉 , (123)

and cancelations identical to those observed in Eq. (119) occur.

IV.2 CURRENTS AT N3LO

At N3LO (eQ), we distinguish among five classes of contributions: i) currents gener-

ated by minimal substitution in the four-nucleon contact interactions involving two

gradients of the nucleons’ fields, as well as by non-minimal couplings—panel a) of

Fig. 23; ii) tree-level non-minimal currents—panel b) of Fig. 23; iii) TPE currents

at one loop—Fig. 25; iv) one-loop corrections to tree-level currents—Figs. 28 and

29; and v) (Q/mN)2 relativistic corrections to the NLO currents resulting from the

non-relativistic reduction of the vertices. The latter are neglected in the present

work.

IV.2.1 Currents from Four-Nucleon Contact Interactions

Contact currents at N3LO are represented in panel a) of Fig. 23. The minimal current

implied by the electromagnetic interactions of Eqs. (260)–(268) is easily obtained by

summing the corresponding vertices listed in Appendix B.3. Specifically, we find

jN
3LO

CTγ = −e e1
[
2 (2C ′

1 − C ′
2) K2 + 4C ′

3 K1 + i C ′
4 (σ1 + σ2)× k2 + i C ′

5 σ1 × k1

− i C ′
6 σ2 × k1 + 2 (2C ′

7 − C ′
10) (K2 · σ2) σ1 + 2 (2C ′

8 − C ′
11) (K2 · σ1) σ2

− 2C ′
13 [(K1 · σ1) σ2 + (K1 · σ2) σ1] + 2 (2C ′

9 − C ′
12)K2 (σ1 · σ2)

− 4C ′
14 K1 (σ1 · σ2)

]
+ 1 ⇋ 2 , (124)

where the momenta are defined as in Eq. (103).

Similarly, the non-minimal contact current implied by the Hamiltonian of

Eq. (273) is obtained by the corresponding vertex—Eq. (306)—and reads

jN
3LO

CTγ,nm = −i e
[
C ′

15 σ1 + C ′
16 (τ1,z − τ2,z) σ1

]
× q + 1 ⇋ 2 . (125)
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a) b)

FIG. 23: Diagrams illustrating the N3LO contact currents, both of minimal and
non-minimal nature, panel a), and the N3LO tree-level current involving the nuclear-
electromagnetic Hamiltonian of Eq. (272) at the vertex illustrated by a full circle in
panel b). Notation is as in Fig. 20. Only one of the possible time-ordered diagrams
is represented in panel b) for the tree-level current.

IV.2.2 Tree-Level Non-Minimal Current at N3LO

At N3LO there is a contribution involving the standard πNN vertex on one nucleon,

and a γπNN vertex of order eQ2 on the other nucleon, derived from the interaction

Hamiltonian of Eq. (272). This tree-level current is represented in panel b) of Fig. 23,

and a direct evaluation of the corresponding amplitude leads to

jN
3LO

tree = i e
gA

F 2
π

[
(d ′

8 τ2,z + d ′
9 τ1 · τ2)k2 − d ′

21(τ1 × τ2)zσ1 × k2

]
× q

σ2 · k2

ω2
k2

+ 1 ⇋ 2 .

(126)

Higher order Hamiltonians derived from the χEFT Lagrangians in the pion and nu-

a) b)

πρ

FIG. 24: Diagrams illustrating the pion exchange current involving the excitation of
virtual ∆-resonance, panel a), and the γρπ exchange current. Notation as in Fig. 20,
but for the thick line representing the ∆-isobar in panel a), and for the dashed lines
representing ρ and π mesons as indicated in panel b).

cleon sector, such as the eQ2 interaction of Eq. (272), subsume interactions involving

heavy-mesons or nucleon resonances integrated out from the theory. This feature,
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referred to as the ‘saturation mechanism’, is typical of the χEFT formulation. In-

deed, χEFT Lagrangians describe the dynamics of the system in terms of a given

set of degrees of freedom, and contributions arising from additional and heavier de-

grees of freedom are implicitly incorporated in the theory. Higher order interactions,

described in our case in terms of pions and nucleons, include subleading pion and

nucleon interactions. For example, the isovector part of jN
3LO

tree has the same structure

as the current involving N -∆ excitation [42] as illustrated in panel a) of Fig. 24. This

current is obtained by direct evaluation of the amplitude which now involves πN∆

and γπN∆ couplings implied by the corresponding χEFT Lagrangians, and in the

static limit is given by [42]

j∆ = i
e µ∗

9mN

gA hA

∆F 2
π

σ2 · k2

k2
2 +m2

π

[
4 τ2,z k2 − (τ1 × τ2)z σ1 × k2

]
× q + 1 ⇋ 2, (127)

where ∆ is the ∆-N mass difference, ∆=m∆−mN , hA is the πN∆ coupling constant,

and µ∗ is the N∆-transition magnetic moment. The isovector part of jN
3LO

tree then

reduces to the j∆ given above, if the following identifications are made: d ′
21/d

′
8 = 1/4,

and d ′
8 = 4µ∗hA/(9mN ∆). Similarly, the isoscalar part of jN

3LO
tree simulates the ρπγ

current (see [10] and references therein), illustrated in panel b) of Fig. 24 and given

by the following expression

jρπγ = i e
gAgρπγgρNN

Fπm3
ρ

τ1 · τ2 k2 × q
σ2 · k2

ω2
k2
ω2

k1,ρ

+ 1 ⇋ 2 , (128)

where ω2
k1,ρ =

√
m2

ρ + k2
1, is the ρ-meson propagator with mρ indicating the ρ-meson

mass, gρπγ is the ρπγ transition coupling constant, and gρNN is the ρNN coupling

constant (its vector coupling). If one ignores the ρ-meson propagation, then the

isoscalar part of jN
3LO

tree reduces to the expression above, if d ′
9 = gρπγgρNNFπ/m

3
ρ.

The ‘resonance saturation’ argument is commonly exploited to fix LECs entering

the theory. Indeed, we will utilize the constraint d ′
21/d

′
8 = 1/4 implied by the ∆-

resonance saturation mechanism. But otherwise we will determine the remaining

LECs so as to reproduce nuclear electromagnetic observables—see Sec. VI.

IV.2.3 One-Loop Two-Body Currents

One-loop two-body currents are illustrated by the diagrams in Fig. 25, where we

indicate the nucleons’ momenta, as well as those of the exchanged pions qi, with i

as indicated in the figure. The expressions for these currents follow from a direct
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evaluation of the transition amplitudes associated with these diagrams. Recoil cor-

rections to the reducible contributions are properly accounted for in the currents of

type d), e), and g). This aspect of the calculation is discussed in more detail in the

next section.

2

1

a)
p2

2

1
331

b) c)
p1

2 2

3

1
1

d) e) f )

1

p2 + k2p1 + k1

2

2
1

g) h) i)

1

2

1

FIG. 25: Diagrams illustrating one-loop two-body currents. Only one among the
possible time orderings is shown. Notation is as in Fig. 20.

In what follows, we refer to the panels of Fig. 25. We also introduce the notation
∫
≡
∫

dqi

(2π)2
, ωi =

√
q2
i +m2

π , (129)

where the integration is over one of the exchanged pions, while the remaining internal

momenta qj , with j 6= i are fixed by the momentum-conserving δ̄-functions at each

vertex. Referring to Fig. 25, we find

jN
3LO

a = −2 i
e g2

A

F 4
π

∫
2 τ2,z (σ1 × q2) + (τ1 × τ2)z q2

ω1 ω2(ω1 + ω2)
+ 1 ⇋ 2 , (130)

where, for example, the integral is over q1, and the internal momentum q2 = k2−q1.

Type b) diagrams give

jN
3LO

b = 2 i
e g2

A

F 4
π

∫
q1 − q3

ω1 ω2 ω3

ω1 + ω2 + ω3

(ω1 + ω2)(ω1 + ω3)(ω2 + ω3)

[
(τ1 × τ2)z q1 · q2

− 2 τ2,z σ1 · (q1 × q2)
]

+ 1 ⇋ 2 . (131)
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Next, the contributions of type c)-e) diagrams are:

jN
3LO

c = −i e

2F 4
π

(τ1 × τ2)z

∫
q1 − q3

ω1 ω3

ω2(ω1 + ω2 + ω3)− 3ω1 ω3

(ω1 + ω2)(ω1 + ω3)(ω2 + ω3)
, (132)

jN
3LO

d = −2 i
e g4

A

F 4
π

∫
ω2

1 + ω2
2 + ω1ω2

ω3
1 ω

3
2 (ω1 + ω2)

[
(τ1 × τ2)z q2 (q1 · q2)

+ 2 τ2,z q1 · q2 (σ1 × q2) + 2 τ1,z q2 σ2 · (q1 × q2)
]

+ 1 ⇋ 2 , (133)

jN
3LO

e = 2 i
e g4

A

F 4
π

∫
(q1 − q3)f(ω1, ω2, ω3)

[
(τ1 × τ2)z (q1 · q2)(q2 · q3)

+ 2 τ2,z (q2 · q3) σ1 · (q2 × q1) + 2 τ1,z (q1 · q2) σ2 · (q3 × q2)
]
, (134)

where the function f(ω1, ω2, ω3) containing the pion energy factors from field nor-

malizations and energy denominators for diagrams of type e) is defined as

f(ω1, ω2, ω3) =
1

ω1 ω2 ω3(ω1 + ω2)(ω1 + ω3)(ω2 + ω3)

[
ω1 ω2 + ω2 ω3 + ω1 ω3

ω1 ω2 ω3

+
(ω1 + ω2) (ω2 + ω3) (ω2

1 + ω2
3)

ω2
1 ω2 ω

2
3

+
ω2

ω1 ω3

+
ω1 + ω2 + ω3

ω2
2

]
. (135)

Lastly, diagrams of type f) and h) vanish, since the integrand (in the static limit) is

an odd function of the loop momentum q1,

jN
3LO

f and jN
3LO

h ∝
∫

q1

ω3
1

× (spin−isospin structure) . (136)

However, the contributions of type g) and i) diagrams read:

jN
3LO

g = 2 i
e g2

ACT

F 2
π

(τ1 × τ2)z

∫
q1 − q2

ω3
1 ω

3
2

ω2
1 + ω1 ω2 + ω2

2

ω1 + ω2
(σ1 · q2)(σ2 · q1),(137)

jN
3LO

i = i
e g2

A

F 2
π

τ1,z

∫
q1 − q2

ω3
1 ω

3
2

ω2
1 + ω1 ω2 + ω2

2

ω1 + ω2

[
CS σ1 · (q1 × q2)

− CT σ2 · (q1 × q2)
]

+ 1 ⇋ 2 . (138)

We observe that, the one-loop two-body currents have only isovector components.

The TPE currents of panels a)–e), are expressed in terms of known LECs, i.e. the

axial coupling constant gA, and the pion decay amplitude Fπ. Thus these currents

are already fixed by the experimental data, while the remaining one-loop currents

involve the LECs CS and CT from the contact interaction vertex.

In closing, we note that diagrams of the type shown in Fig. 26 are suppressed by

an extra power of Q relative to those considered in this section, i.e. they are of order
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1

2 2

c) d) e) f)

1
1 1

1

2
2

b)a)

1

FIG. 26: Diagrams illustrating N4LO contributions not included in the present work.
Only one among the possible time orderings is shown. Notation is as in Fig. 20.

eQ2. For example, the diagrams of type a) give rise to the following current operator

type a) in Fig. 26 =
e

m

g2
A

F 4
π

τz,1(2K1 + iσ1 × k1)

∫
q1 · q2

ω2
1 ω

2
2

+ 1 ⇋ 2 , (139)

where the momentum Ki is as given in Eq. (103), while those of type b) vanish,

since they are proportional (δaz τ1,b + δbz τ1,a− 2 δab τ1,z) ǫabc τ2,c = (ǫzbc + ǫbzc) τ1,b τ2,c.

Therefore, the one-loop two-body current at N3LO is given by the sum of the currents

of type a)–e), g), and i)

jN
3LO

loop = jN
3LO

a + jN
3LO

b + jN
3LO

c + jN
3LO

d + jN
3LO

e + jN
3LO

g + jN
3LO

i , (140)

where the individual currents are given in Eq. (130)–(134), (137), and (138).

Recoil Corrections: Cancellations at N3LO

The evaluation of the current operators resulting from the diagrams of Fig. 25, pan-

els d)-e) and g), is carried out by including the recoil corrections of order Q to the

reducible diagrams shown in Fig. 27 panels a)-c). Again, we do not consider recoil

corrections arising from pions emitted and reabsorbed by the same nucleon, therefore

the current jN
3LO

i , illustrated in panel i) of Fig. 25, is obtained by retaining irreducible

terms only. Cancellations between reducible and recoil corrected reducible contribu-

tions are also observed at N3LO. As an example, we consider the irreducible and

reducible diagrams represented in Fig. 25 d) and Fig. 27 a), respectively. We follow

the procedure adopted in Sec. IV.1.1, and expand, in the reducible diagrams, the

energies of the intermediate nucleonic states, which are suppressed by a factor Q/M

with respect to the pionic energies ωi ∼ Q. Up to order eQ, the current operator
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2 2
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1
2

FIG. 27: Diagrams illustrating the reducible one-loop two-body currents. Only one
among the possible time orderings is shown. Notation is as in Fig. 20.

jN
3LO

d, red associated with the reducible ‘box’ diagrams then reads

jN
3LO

d, red =

∫
vπ(q2)

1

Ei − Ẽ1 − Ẽ2 + iη
jNLO
b (q1)

−
∫

2
ω1 + ω2

ω1 ω2
VπNN(2,q2)VπNN(2,q1)VπNN(1,q2)VγπNN(1,q1) ,(141)

where vπ(q2) and jNLO
b (q1) are the OPEP and pion-seagull current operators in the

static limit defined in Eqs. (39) and (106), respectively. As usual, the V (i,q j) denotes

the vertex from the interaction Hamiltonian relative to nucleon i and a pion with

momentum q j , and Ei is the initial energy of the system, while Ẽ1 and Ẽ2 are the

energies of the intermediate nucleons. Also we ignore the first term of Eq. (141),

but retain the second term due to recoil corrections, and add it to the irreducible

contribution, jN
3LO

d,irr , which is given by

jN
3LO

d,irr =

∫
2

ω1 ω2(ω1 + ω2)
VπNN(2,q2)VπNN(2,q1)VπNN(1,q1)VγπNN(1,q1)

+

∫
2
ω2

1 + ω2
2 + ω1 ω2

ω1 ω2(ω1 + ω2)
VπNN(2,q1)VπNN(2,q2)VπNN(1,q2)VγπNN(1,q1).(142)

The first term above comes from the irreducible direct diagrams (in which, with

reference to Fig. 25 d), pion 1 is absorbed before pion 2), while the second term is

from the crossed diagrams (in which pion 1 is absorbed after pion 2). Equation (142)

can be further simplified expressing the product VπNN(2,q1)VπNN(2,q2) as

VπNN(2,q1)VπNN(2,q2) = [VπNN(2,q1), VπNN(2,q2)] + VπNN(2,q2)VπNN(2,q1) ,

(143)
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to obtain

jN
3LO

d,irr =

∫
2
ω1 + ω2

ω1 ω2
VπNN(2,q2)VπNN(2,q1)VπNN(1,q2)VγπNN(1,q1)

+

∫
2
ω2

1 + ω2
2 + ω1 ω2

ω1 ω2(ω1 + ω2)

× [VπNN(2,q1), VπNN(2,q2)]VπNN(1,q2)VγπNN(1,q1) . (144)

The complete current of type d) is then

jN
3LO

d =

∫
2
ω2

1 + ω2
2 + ω1 ω2

ω1 ω2(ω1 + ω2)

× [VπNN(2,q1) , VπNN(2,q2)]VπNN(1,q2)VγπNN(1,q1) − h.c. , (145)

where the h.c. term corresponds to including the diagrams in which the photon hooks

up to the pion with momentum q2. Note that the recoil corrections exactly cancel the

first term of Eq. (144), leaving the term proportional to the energy factor associated

with the crossed diagrams only. We find it interesting that these cancellations are

also obtained for the current of type e). The latter is again expressed in terms of a

commutator between the vertices involving nucleon 2 multiplied by the energy factor

f(ω1, ω2, ω3), defined in Eq. (135), coming from the crossed diagrams

jN
3LO

e =

∫
4 f(ω1, ω2, ω3) [VπNN(2,q3), VπNN(2,q2)]

× VπNN(1,q2)VπNN(1,q1)Vγππ(q1,q3) − h.c. , (146)

and it is therefore tempting to conjecture that they persist at higher orders. However,

this statement has not been proven.

Renormalization of One-Loop Currents

The kernels entering the one-loop currents derived in Sec. IV.2.3 need to be regular-

ized because of their divergent behavior at high values of the momentum. We follow

the dimensional regularization scheme adopted to renormalize the NN potential. We

consider the currents (involving one and two pions) illustrated in panels a), d), g),

and i) of Fig. 25. Those in panels b), c), and e) (involving three pions) are discussed

in Sec. V.1. For them we only derive the corresponding magnetic dipole operators.

In the expressions for the currents of type a) and d), given in Eqs. (130) and (133),

respectively, a δ̄(q1 + q2 − k2) and an integration over the momenta q1 and q2 are

implicit. After integrating over one of the momentum, we can rewrite the expressions
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of these currents in terms of the kernels defined in Appendix C. In particular we

obtain

jN
3LO

a = − i e g
2
A

F 4
π

I(0)(k2)
[
2 τ2,z σ1 × k2 + (τ1 × τ2)z k2

]
+ 1 ⇋ 2 , (147)

jN
3LO

d = −i e g
4
A

F 4
π

[
[
k2

2 J
(0)(k2)− J (2)(k2)

] [
2 τ2,z σ1 × k2 + (τ1 × τ2)z k2

]

+ 4 τ1,z J
(2)
ij (k2) (σ2 × k2)j

]
+ 1 ⇋ 2 . (148)

The Eqs. (137) and (138) relative to currents of type g) and i) contain a δ̄(q1+q2−q)

and they are rewritten in terms of the kernels as

jN
3LO

g = −2 i e
g2

A

F 2
π

CT (τ1 × τ2)z J
(2)
ij (q) σ1,j σ2 · q + 1 ⇋ 2 , (149)

jN
3LO

i = −2 i e
g2

A

F 2
π

τ1,z J
(2)
ij (q)

[
CS (σ1 × q)j − CT (σ2 × q)j

]
+ 1 ⇋ 2 . (150)

Insertion of the finite parts of the various kernels in the expressions above gives then

j
N3LO

a = i e
g2

A

8π2F 4
π

G(k2)
[
2 τ2,z σ1 × k2 + (τ1 × τ2)z k2

]
+ 1 ⇋ 2 , (151)

j
N3LO

d = −i e g4
A

8 π2 F 4
π

G(k2)

[(
3− 4m2

π

4m2
π + k2

2

)[
2 τ2,z σ1 × k2 + (τ1 × τ2)z k2

]

− 4 τ1,z σ2 × k2

]
+ 1 ⇋ 2 , (152)

j
N3LO

g = i e
g2

ACT

4 π2 F 2
π

(τ1 × τ2)z G(q) σ1 σ2 · q + 1 ⇋ 2 , (153)

j
N3LO

i = i e
g2

A

4π2 F 2
π

τ1,z G(q) (CS σ1 × q− CT σ2 × q) + 1 ⇋ 2 , (154)

and the loop function G is defined in Eq. (73). The divergent parts of the kernels lead

to renormalization of some of the LECs C ′
i entering the N3LO contact current, both

of minimal and non-minimal nature, defined in Eqs. (124) and (273). Specifically,
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these renormalization constant are given by

jN
3LO

∞,a = i e
g2

A

8π2F 4
π

(
2

ǫ
+ . . .

)[
− 2 τ2,z σ1 × k2 − (τ1 × τ2)z k2

]
+ 1 ⇋ 2 , (155)

jN
3LO

∞,b = i e
g2

A

8π2F 4
π

(
2

ǫ
+ . . .

)[
2 τ2,zσ1 × (k2 − q)− 2

3
(τ1 × τ2)zk2

]
+1 ⇋ 2,(156)

jN
3LO

∞,c = i e
1

48π2F 4
π

(
2

ǫ
+ . . .

)
(τ1 × τ2)z (k1 − k2) , (157)

jN
3LO

∞,d = i e
g4

A

8π2F 4
π

(
2

ǫ
+ . . .

)[
τ2,zσ1 × (6k2 − 4k1) + 3(τ1 × τ2)zk2

]
+1 ⇋ 2,(158)

jN
3LO

∞,e = i e
g4

A

8π2F 4
π

(
2

ǫ
+ . . .

)[
10 τ2,z σ1 × k1 +

5

6
(τ1 × τ2)z k2

]
+ 1 ⇋ 2 , (159)

jN
3LO

∞,g = i e
g2

A

4π2F 2
π

(
2

ǫ
+ . . .

)
(τ1 × τ2)z CT

[
σ2 σ1 · q− σ1 σ2 · q

]
, (160)

jN
3LO

∞,i = i e
g2

A

4π2F 2
π

(
2

ǫ
+ . . .

)
τ1,z

[
CT σ2 × q− CS σ1 × q] + 1 ⇋ 2 , (161)

where the dots denote finite contributions depending on the renormalization point.

Although we did not derive the finite expressions for the currents of type b), c), and

e)—referring to Fig. 25—we remark here that the renormalization procedure is carried

out by considering the divergent parts of all the one-loop TPE currents illustrated

in Fig. 25. When combined together, all these divergences can be absorbed by the

renormalization of the C ′
i, which is not the case for the individual contributions. We

can exploit Fierz identities (or the antisymmetry properties of nucleons’ states) to

reduce the spin-isospin structure multiplying the renormalization constants above

so as to match those entering the contact current at N3LO. In particular, terms

proportional to (τ1 × τ2)z, can be reduced exploiting the following relation

(τ1 × τ2)z (k2 − k1) = −2 i e1 (1 + σ1 · σ2)(K1 −K2) + 1 ⇋ 2 , (162)

and lead to renormalization of the LECs C ′
3, C

′
14, (2C ′

1 − C ′
2) and (2C ′

9 − C ′
12),

entering Eq. (124). The relations below

(τ2,z σ1 + τ1,z σ2)× q = −(τ1,z σ1 + τ2,z σ2)× q

=
1

2
(τ1 × τ2)z

[
σ1 σ2 · q− σ2 σ1 · q

]

= −1

2
(τ1,z − τ2,z) (σ1 − σ2)× q , (163)

allow one to reduce the q-dependent structures multiplying the renormalization con-

stants, leading to renormalization of C ′
16, entering Eq. (273).
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IV.2.4 One-Loop Corrections to Tree-Level Currents

Contributions in this class are illustrated by the diagrams in Figs. 28 and 29. Before

listing the formal expressions obtained for these diagrams, we note that diagrams of

panels a)–d) and m)–r) involve three– and four–pion couplings. The Hamiltonians

describing these interactions are obtained from the chiral Lagrangians of Ref. [1]

by including corrections π
2(x)/F 2

π in the expansion of D−1 factors, where D ≡
1 + π

2(x)/F 2
π , entering these chiral Lagrangians. The explicit expressions for the

H3πNN and H4π Hamiltonians are given in Appendix A, along with the corresponding

minimal Hamiltonians Hγ3πNN and Hγ4π. The scaling of the vertices implied by these

interactions is summarized in Table 6.

Q-scaling Q-scaling
H3πNN Q Hγ 3πNN eQ0

H4π Q2 Hγ 4π eQ

TABLE 6: Powers of Q, the small momentum scale, associated with the vertices from
the strong- and electromagnetic-interaction Hamiltonians of Eqs. (277), (278), (282),
and (283).

We express the amplitudes corresponding to diagrams in Figs. 28 and 29 in terms

of the kernels I
(2)
ij (q) and J

(2)
ij (q), and renormalization constants M (n), given in Ap-

pendix C. In particular, referring to Fig. 28 we find

type a) = jNLO
b

[
− 3

2F 2
π

M (1)

]
, (164)

type b) = −i e g
2
A

F 2
π

(τ1 × τ2)z σ1
σ2 · k2

ω2
k2

[
− 1

ω2
k2

m2
π

F 2
π

M (1)

]
+ 1 ⇋ 2 , (165)

type c) = jNLO
b

[
− 5

2F 2
π

M (1)

]
, (166)

type d) = −i e g
2
A

2F 4
π

(τ1 × τ2)z I
(2)
ij (q) σ1,j

σ2 · k2

ω2
k2

+ 1 ⇋ 2 , (167)

type e) = jNLO
b

[
1

F 2
π

M (1)

]
, (168)

type f) = i e
g2

A

2F 4
π

(τ1 × τ2)z I
(2)
ij (q) σ1,j

σ2 · k2

ω2
k2

+ 1 ⇋ 2 , (169)

type j) = i e
2 g4

A

F 4
π

τ2,z J
(2)
ij (q) (k2 × q)j

σ2 · k2

ω2
k2

+ 1 ⇋ 2 , (170)

type k) = type l) = jNLO
b

[
g2

A

6F 2
π

M (3)

]
, (171)
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a) b) c) d)

e) f) g) h)

i) j) k) l)

FIG. 28: Diagrams illustrating loop corrections to tree-level two-body currents, no-
tation as in Fig. 20. Only one among the possible time orderings is shown for each
contribution.

while diagrams in Fig. 29 give the following amplitudes:

type m) + type n) = jNLO
c

[
− 3

F 2
π

M (1)

]
, (172)

type o) + type p) = jNLO
c

(
− 1

ω2
k1

− 1

ω2
k2

)
m2

π

F 2
π

M (1) , (173)

type q) = jNLO
c

[
− 5

F 2
π

M (1)

]
, (174)

type r) = i e
g2

A

F 4
π

(τ1 × τ2)z I
(2)
ij (q) (k1 − k2)j

σ1 · k1

ω2
k1

σ2 · k2

ω2
k2

, (175)

type u) + type v) = jNLO
c

[
g2

A

3F 2
π

M (3)

]
, (176)

where jNLO
b and jNLO

c are the seagull and pion-in-flight currents of Eqs. (106)

and (107). The contributions associated with diagrams of type h), i), s), and t)

vanish, since the integrand is an odd function of the loop momentum p. Contribu-

tions of diagrams d) and f) exactly cancel out. Lastly, diagrams of type g), along

with those represented in Fig. 30, are of order eQ2, and therefore beyond the order
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m) n) o) p)

q) r) s) t)

v)u)

FIG. 29: Same as in Fig. 28.

under consideration in the present study.

The evaluation of the diagrams in the last row of Figs. 28 and 29 is carried out

by including recoil corrections to the reducible diagrams of corresponding topology.

Cancellations occur between the irreducible and these recoil-corrected reducible con-

tributions. This aspect of the calculation is discussed in more detail in Appendix D,

along with the derivation of the current of type j), for which only a subset of irre-

ducible diagrams is retained in the evaluation of the corresponding amplitude.

Loop corrections to the LO tree-level current contribute to renormalize the axial

coupling constant, gA, and the pion mass, mπ, entering the LO current operator.

Specifically, from the expressions listed in Eqs. (164)-(176), it is easily seen that the

contributions of type a), c), e), k)-l), m)-n), q), and u)-v) lead to further renormal-

ization of gA, while those of type b) and o)-p) renormalize the pion mass, namely

m2
π = m2

π(1 + M (1)/F 2
π ). Thus, both types are accounted for in the renormalized

seagull, jNLO
b , and pion-in-flight, jNLO

c , currents.

Diagrams j) and r) generate form-factor corrections to the nucleon and pion elec-

tromagnetic couplings. The latter follow from the finite parts of the I
(2)
ij and J

(2)
ij
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kernels entering Eqs. (170) and (175). These corrections to the electromagnetic cou-

pling of the nucleons are accounted for implicitly, since we use the experimental

values of the anomalous magnetic moments of the nucleons, and give there form

factor corrections.

a) b)

FIG. 30: Diagrams illustrating N4LO (eQ 2) loop corrections to tree-level currents
not included in the present study, notation as in Fig. 20.

IV.3 THREE-BODY CURRENTS AT N3LO

So far we explored the two-nucleon system, and derived the NN interaction as well

as the two-body electromagnetic current up to N2LO and N3LO, respectively. A

natural question to ask is whether there are three-body components entering the

nuclear potential and/or electromagnetic current at the order we are investigating.

To answer this question, we need to classify the diagrams involving three nucleons

entering the potential (and current) contributions.

Consider first the diagrams in panel a) and b) of Fig. 31. These disconnected

diagrams arise from considering two nucleons interacting via the LO two-body po-

tential derived in Sec. III, while the third nucleon acts as a spectator. Following the

power counting rules established earlier, we find that these diagrams scale as Q−3.

Similarly, disconnected diagrams involving nucleons interacting via the two-body po-

tential at N2LO scale as Q−1, as can be inferred from panels c) and d) of Fig. 31

(the dots indicate disconnected diagrams where two nucleons are interacting via the

remaining TPE contributions to the NN potential). These disconnected three-body

contributions at Q−3 and Q−1 are accounted for when the two-body potential is used

to generate the nuclear wave functions of a three-body system. According to the

power counting scheme, genuine three-body forces occur at Q−1 and they are rep-

resented by the diagrams in Fig. 32. We find that the amplitude implied by the

diagram in panel a) vanishes. Specifically, referring to Fig. 33, where we illustrate
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a) b) c) d)

+ . . .

FIG. 31: Diagrams illustrating disconnected three-body contributions to the NN →
NN transition amplitude at order Q−3, panels a) and b), and at order Q−1, panels
c) and d). Notation as in Fig. 20.

a) b) c)

FIG. 32: Diagrams illustrating the three-body contributions to the NN → NN
transition amplitude at order Q−1. Notation as in Fig. 20. Only one of the possible
time-ordered diagrams is shown.

the complete set of time-ordered diagrams associated with this amplitude, we find

that contributions arising from diagrams in panels a), b) and c) are exactly canceled

by those arising from diagrams in panels d), e) and f), respectively. For example, the

amplitude implied by the diagram in panel a) is equal to that one associated with

the diagram in panel d) but for an overall sign. This sign difference follows from the

Weinberg-Tomozawa interaction associated with nucleon 2 and the exchanged pions

with momenta q1 and q2, and isospin components a and b. The vertex entering

the diagram in panel a), implied by the Weinberg-Tomozawa Hamiltonian given in

Eq. (236), has the same structure as that entering the diagram in panel d), but for

the aforementioned sign

VW−T(2,q1,q2)|panel a) =
i

F 2
π

ω1 + ω2√
4ω1ω2

ǫabc τ2,c = − VW−T(2,q1,q2)|panel d) . (177)

A similar argument applies to diagrams in panels b)-e) and c)-f) of the same figure.

Diagrams illustrated in panels b) and c) of Fig. 32 have both reducible and irre-

ducible topologies, as shown in Fig. 34, and recoil corrected reducible contributions
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q1

q2

b) c)a)

1 2 3

d) e) f)

FIG. 33: Complete set of time-ordered diagrams for the three-body force illustrated
in panel a) of Fig. 32. Notation as in Fig. 20.

exactly cancel out the corresponding irreducible terms, leading to vanishing ampli-

tudes (these cancellations had also be found in [2]). Therefore, at the order we are

interested in, there are no ‘genuine’ three-body forces.

a) b) d)c)

FIG. 34: Irreducible, panels a) and c), and reducible, panels b) and d), contributions,
to the three-body forces illustrated in panels b) and c) of Fig. 32. Notation as in
Fig. 20. Only one of the possible time-ordered diagrams is shown.

Having proved that three-body forces do not occur at N2LO, we expect that three-

body currents at N3LO either vanish or they must be transverse to the photon field in

order to satisfy the continuity equation (see Sec. IV.4). Genuine three-body currents

occur at eQ−2 and are represented by the diagrams illustrated in Fig. 35. Indeed,

the three-body currents implied by the amplitudes associated with these diagrams

vanish, and cancellations occur as discussed for the case of the three-body forces.

Therefore at N3LO the current operator is completely determined by the one– and

two–body contributions derived in the present work.

IV.4 CURRENT CONSERVATION

In the present formulation, the NN potential and the electromagnetic current oper-

ators have been derived in TOPT with the additional prescription of retaining recoil



68

a) b) c)

f )e)d)

FIG. 35: Diagrams illustrating the three-body contributions to the γNN → NN
transition amplitude at order eQ−2. Notation as in Fig. 20. Only one of the possible
time-ordered diagrams is shown.

corrected reducible contributions in the evaluation of the corresponding transition

amplitudes. It is important to verify whether this formalism leads to currents which

are conserved, i.e., we want to verify that the current operator satisfies the continuity

equation

q · j =

[
p 2

1

2mN
+

p 2
2

2mN
+ v12 , ρ

LO

]
, (178)

where q is momentum transfer by the external photon, and ρLO is the charge operator

given by

ρLO = ρLO
1 + ρLO

2 = e (eN,1 + eN,2) = e

[
1 + τ1,z

2
+

1 + τ2,z

2

]
. (179)

Note that the vertex implied by the charge operator scales as e, therefore the one-

body (disconnected contribution) charge operator scales as eQ−3, and occurs at

LO. In the χEFT formulation, the current is conserved order by order in the power

expansion. For example, it is easily verified that the LO current operator satisfies the

continuity equation with the kinetic energy term of the nuclear Hamiltonian. The

OPE currents at NLO satisfy the continuity equation with the LO OPE contribution

to the potential. The N2LO currents arising from relativistic corrections to the LO

one-body term require the inclusion of these corrections also in the charge operator,

in order for the continuity equation to be satisfied. We will not discuss them further

here.



69

p1 p2
a) b)

3

2

2

3
p̃2

p1 + k1 p2 + k2

p̃1

FIG. 36: Diagrams illustrating the reducible, panel a), and irreducible, panel b),
two-body ‘box’ potential. Only one among the possible time orderings is shown.
Notation is as in Fig. 20.

We have explicitly verified that the N3LO current operators obtained in

Secs. IV.2.1–IV.2.3—here denoted as jN
3LO—satisfy the continuity equation with the

N2LO potential vN2LO derived in Sec. III.1, i.e.

q · jN3LO =
[
vN2LO , ρLO

]
. (180)

Due to the structure of the LO charge operator, isospin independent terms of the

NN potential generate a vanishing commutator, thus to these terms correspond van-

ishing currents or currents which are orthogonal to the external photon momentum.

For example, the loop potential of type i) defined in Eq. (68) is isospin independent

and the corresponding current—Eq. (154)—is transverse. Currents of non-minimal

nature are by construction transverse, since they are not generated by gauging deriva-

tive couplings in the strong interaction Hamiltonians, but enter via coupling to the

electromagnetic tensor Fµν .

The calculation of the commutator in Eq. (180) is straightforward for the contact

potential at N2LO, and leads to the conservation of the minimal contact current

at N3LO. Therefore, we discuss in more detail its evaluation for loop contributions

which involve reducible diagrams. We illustrate the calculation carried out for the

currents of type d) and e) of Fig. 25. The potential generated by the ‘box’ diagrams

is given in Eq. (59) and reads

vf(k) = −2 g4
A

F 4
π

∫
ω2

2 + ω2
3 + ω2 ω3

ω3
2 ω

3
3 (ω2 + ω3)

[
2 τ1 · τ2 (q2 ·q3)

2 + 3 σ1 · (q2×q3) σ2 · (q2×q3)
]
,

(181)

where the integration is carried out on one of the internal momenta. The latter are

labelled as indicated in Fig. 36, therefore q2 + q3 = k2 = −k1. Evaluation of the
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commutator of vf(k) with the charge operator gives

[
vf(k) , ρLO

]
= vf(k− q/2) ρLO

1 − ρLO
1 vf(k− q/2) + 1 ⇋ 2

= −i e2 g
4
A

F 4
π

(τ1 × τ2)z

∫
ω2

2 + ω2
3 + ω2 ω3

ω3
2ω

3
3(ω2 + ω3)

(q2 · q3)
2 + 1 ⇋ 2, (182)

where now k1 + k2 = q and q2 + q3 = k2, and the isospin structure comes from the

evaluation of the commutator

[τ1 · τ2 , τ1,z] = 2 i (τ1 × τ2)z . (183)

Currents of type d) and e) in Fig. 25, combined together, satisfy the continuity

equation with the ‘box’ potential. In particular, the l.h.s. of Eq. (178) for the currents

of type d) given in Eq. (133) and illustrated in Fig. 25 reads

q · jN3LO
d = −i e2 g

4
A

F 4
π

∫
ω2

2 + ω2
3 + ω2ω3

ω3
2 ω

3
3 (ω2 + ω3)

[
(τ1 × τ2)z q2 (q2 · q3)

+ 2 τ2,z (q2 · q3) (σ1 × q2) + 2 τ1,z q2 σ2 · (q3 × q2)
]
· q + 1 ⇋ 2 ,(184)

where again momentum conservation requires that k1 + k2 = q and q2 + q3 = k2.

The l.h.s. of Eq. (180) for the currents of type e) given in Eq. (134) and represented

in Fig. 25 reads

q · jN3LO
e = i e

2 g4
A

F 4
π

∫ [
ω2

2 + ω2
3 + ω2 ω3

ω3
2ω

3
3(ω2 + ω3)

− ω2
1 + ω2

2 + ω1 ω2

ω3
1ω

3
2(ω1 + ω2)

]

×
[
(τ1 × τ2)z (q1 · q2)(q2 · q3) + 2 τ2,z (q2 · q3) σ1 · (q2 × q1)

+2 τ1,z (q1 · q2) σ2 · (q3 × q2)

]
, (185)

where q1 = q2 + k1. The factor in the square brackets of the last equation comes

from the product q · (q1 − q3) f(ω1, ω2, ω3),

q·(q1 − q3) f(ω1, ω2, ω3) =
(
q2
1 − q2

3

)
f(ω1, ω2, ω3) =

(
ω2

1 − ω2
3

)
f(ω1, ω2, ω3) , (186)

where f(ω1, ω2, ω3) defined as in Eq. (135). Combining Eqs. (184)–(185), we obtain

q · (jd + je) = −i e2 g
4
A

F 4
π

∫
ω2

2 + ω2
3 + ω2ω3

ω3
2 ω

3
3 (ω2 + ω3)

[
(τ1 × τ2)z (q2 · q3)

2

+2 τ2,z (q2 · q3) σ1 · (q2 × q3) + 2 τ1,z (q2 · q3) σ2 · (q3 × q2)

]
+ 1 ⇋ 2.(187)
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Finally, we note that the last two terms of the previous equation vanish. This is

easily seen by changing q2 → k2/2 + q2 (implying q3 = k2/2 − q2), and observing

that the integrands are odd under q2 → −q2. Hence we are left with the first term

which is equal to Eq. (182), showing that the continuity equation is indeed satisfied.

This proves that the prescription of including recoil corrected reducible contri-

butions to the evaluation of the transition amplitudes leads to conserved currents.

We note in closing that, if irreducible contributions only are retained in both the

potential and currents, then the continuity equation is not satisfied.

IV.5 CURRENTS IN CONFIGURATION SPACE

Before we turn our attention to the derivation of the magnetic moment associated

with the currents derived in the present work, we briefly discuss the regulariza-

tion of the current matrix elements. The calculations of electromagnetic observables

reported in Sec. VI are carried out in configuration space, and hence configuration-

space representations of the current operators are needed. Those of the one-body

operators, that is the current at LO, Eq. (104), and the relativistic correction to the

LO current, Eq. (108), generically denoted as j(1), follow from

j(1)(q) =

∫

k1

∫

K1

eik1·(r′1+r1)/2 eiK1·(r′1−r1) δ(k1 − q) j(1)(k1,K1) , (188)

while those for the two-body current operators j(2) are derived from

j(2)(q) =

∫

k1

∫

k2

∫

K1

∫

K2

eik1·(r′1+r1)/2 eiK1·(r′1−r1) eik2·(r′2+r2)/2 eiK2·(r′2−r2)

× δ(k1 + k2 − q) j(2)(k1,k2,K1,K2) , (189)

where the momenta ki and Ki are defined as in Eq. (103). In particular, Ki →
−i∇′

iδ(r
′
i−ri), i.e. the configuration-space representation of the momentum operator.

The equation above for current operators which do not depend explicitly on the

momenta Ki reduces to

j(2)(q) =

∫

k1

∫

k2

eik1·r1 eik2·r2 δ(k1 + k2 − q) j(2)(k1,k2)

= eiq·R

∫

k

eik·r j(2)(q,k) , (190)

where

R = (r1 + r2)/2 , r = r1 − r2 , (191)
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are the center-of-mass and relative positions of the two nucleons.

The current operator needs to be further regularized in order to avoid singularities

in the current matrix elements. The regularization is accomplished by the insertion

of a momentum cutoff which we choose to be of the form

CΛ(k) = e−(k/Λ)4 , (192)

to preserve the power counting of the currents. In Sec. VI we will study the sensitivity

of the calculated electromagnetic observables to variations of the cutoff parameter

Λ.
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CHAPTER V

MAGNETIC MOMENT AT N3LO

The static magnetic moment operator related to a two-body current density J(x) is

defined as

µ(R, r) =
1

2

∫
dx [x× J(x)] , (193)

where R and r are respectively the center-of-mass and relative positions of the two

nucleons, defined as in Eq. (191). The operator above can be separated into a term

dependent on the center-of-mass position of the two particles and one independent

of it [43, 44], as

µ(R, r) =
1

2

[
R×

∫
dx J(x) +

∫
dx (x−R)× J(x)

]
, (194)

where, because of translational invariance, J(x) is actually a function of J(x−R, r).

The first term in the square brackets is referred to as the Sachs moment, µSachs, and

using integration by parts
∫

dx Ji(x) =

∫
dx ∇ · [xi J(x)]−

∫
dx xi∇ · J(x) , (195)

it can be rewritten as

µSachs(R, r) = −R

2
×
∫

dx x∇ · J(x) . (196)

The Sachs magnetic moment associated with a two-body current distribution is re-

lated to the nuclear potential v12, via the continuity equation, which reads in r-space

∇ · J = i [ρ , H ] , (197)

where H is the two-body nuclear Hamiltonian, ρ is the one-body charge density

operator introduced in Eq. (179)—there it is expressed in momentum space—and we

dropped the superscript LO for simplicity. The configuration representation of the

charge operator reads

ρ(x) = e
1 + τ1,z

2
δ(x− r1) + e

1 + τ2,z

2
δ(x− r2) . (198)

Insertion of Eq. (197) into Eq. (196) leads to

µSachs(R, r) = −iR
2
×
∫

dx x [ρ(x) , v12] , (199)
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where we dropped kinetic terms in the Hamiltonian, since they lead to one-body

components of the magnetic moment operator. This relation is general and inde-

pendent on the nature and form of the nuclear potential v12. It indicates that the

Sachs magnetic moment is uniquely determined by the interaction between the two

nucleons. In particular, non vanishing terms of the commutator between the charge

operator and the nuclear interaction are due to components of the potential which

depend on the momenta of the nucleons and/or on isospin structures which do not

commute with τi,z, with i = 1, 2.

The expression given in Eq. (193) can be written equivalently as

µ(R, r) = − i

2
∇q × j(q)

∣∣∣∣
q=0

, (200)

where j(q) is defined as in Eq. (190), i.e.

j(q) =

∫

k1

∫

k2

eik1·r1 eik2·r2 δ(k1 + k2 − q) j(k1,k2)

= eiq·R

∫

k

eik·r j(q,k) . (201)

Insertion of the equation above into Eq. (200) leads to

µ(R, r) =
1

2

[
R×

∫

k

eik·r j(0,k) − i
∫

k

ei k·r∇q × j(q,k)

∣∣∣∣
q=0

]
. (202)

Comparing Eq. (202) with Eqs. (194) and (199), we find that the Sachs and the

translational invariant magnetic moments can be expressed as

µSachs(R, r) = −i R
2
×
∫

dx x [ρ(x) , v12] =
R

2
×
∫

k

eik·r j(0,k) , (203)

µT(R, r) =

∫
dx (x−R)× J(x) = − i

2

∫

k

eik·r∇q × j(q,k)

∣∣∣∣
q=0

, (204)

from which their momentum space representations follow as

µSachs(R,k) =
R

2
× j(0,k) , (205)

µT(k) = − i
2
∇q × j(q,k)|

q=0 . (206)

The following sections are dedicated to the derivation of the magnetic moment asso-

ciated with the currents at N3LO discussed in Sec. IV.2.
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V.1 MAGNETIC MOMENTS FROM LOOP CURRENTS

The one-loop two-body current jN
3LO

loop illustrated in Fig. 25 generates a magnetic

moment which consists of Sachs and translationally invariant components:

µ
N3LO
loop = µ

loop
Sachs + µ

loop
T . (207)

The Sachs magnetic moment follows from the evaluation of Eq. (199) with the two-

body potential v2π of Eq. (72). The latter can be separate into an isospin independent

term, v2π
0 , and a term which depends on it, v2π

I

v2π(r) = v2π
0 (r) + τ1 · τ2 v

2π
I (r) . (208)

Insertion of the equation above into Eq. (199) leads to

µ
loop
Sachs(R, r) = −iR

2
×
∫

dx x

[
e

1 + τ1,z

2
δ(x− r1) , τ1 · τ2 v

2π
I (r)

]
+ 1 ⇋ 2

= − 1

2
e (τ1 × τ2)z v

2π
I (r)R× r , (209)

from which the momentum space representation follows as

µ
loop
Sachs(R,k) = − i

2
e (τ1 × τ2)z R×∇k v

2π
I (k) , (210)

where v2π
I (k) denotes the Fourier transform of v2π

I (r), i.e.

v2π
I (k) =

1

48π2 F 4
π

G(k)

[
4m2

π(1 + 4g2
A − 5g4

A) + k2(1 + 10g2
A − 23g4

A)− 48 g4
Am

4
π

4m2
π + k2

]
.

(211)

In the equation above the loop function G is defined as in Eq. (73), and the renormal-

ization of the Sachs magnetic moment follows that of the potential. From Eq. (205),

it is easily seen that the relation in Eq. (210) can be verified by direct evaluation of

(R/2) × jN
3LO

loop (q = 0,k). Note that the current of type g) and i)—see Eqs. (153)

and (154)—do not contribute to the Sachs magnetic moment, since they vanish at

q = 0.

The translationally invariant magnetic moment associated with the loop current

at N3LO is obtained from

µ
loop
T (k) = − i

2
∇q × jN

3LO
loop (q,k)

∣∣∣∣
q=0

, (212)
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where jN
3LO

loop is the current given in Eq. (140). The details of the calculation are given

in Appendix E, where we find that the translationally invariant magnetic moment

due to the one-loop two-body currents is conveniently written as

µ
loop
T (k) =

e g2
A

8 π2F 4
π

τ2,z

[
F0(k) σ1 − F2(k)

kσ1 · k
k2

]

+
e g2

A

2 π2F 2
π

τ2,z (CS σ2 − CT σ1) + 1 ⇋ 2 , (213)

where the functions Fi(k) are

F0(k) = 1− 2 g2
A +

8 g2
Am

2
π

k2 + 4m2
π

+ G(k)

[
2− 2 g2

A −
4 (1 + g2

A)m2
π

k2 + 4m2
π

+
16 g2

Am
4
π

(k2 + 4m2
π)2

]
, (214)

F2(k) = 2− 6 g2
A +

8 g2
Am

2
π

k2 + 4m2
π

+ G(k)

[
4 g2

A −
4 (1 + 3 g2

A)m2
π

k2 + 4m2
π

+
16 g2

Am
4
π

(k2 + 4m2
π)2

]
. (215)

The magnetic moment µ
loop
T is expressed in Eq. (213) in terms of two simple operato-

rial structures. It is interesting to note that the constant 2−6 g2
A in F2(k) would lead

to a long-range contribution of the type [τ2,z (σ1 ·∇)∇ + 1 ⇋ 2] 1/r in the magnetic

moment, which is, however, fictitious in the present context of an effective field the-

ory valid at low momenta—in performing the Fourier transform, the high momentum

components are suppressed by the cutoff CΛ(k).

The total magnetic moment due to jN
3LO

loop is finally given by the expressions in

Eqs. (210) and (213). The LECs entering this operator, namely gA, Fπ, CS, and CT

are known. In particular, CS, and CT have been fixed by fitting the N2LO potential

as discussed in Sec. III.3.

Currents in χEFT at N3LO have also been derived, using different formalisms, by

Park et al. in Ref. [4] and, more recently, by Kölling et al. in Ref. [45]. The derivation

in Ref. [4] is based on covariant perturbation theory and concerns contributions from

the one-loop corrections. We find two main differences in the structures of the TPE

magnetic moments. The first one is related to the treatment of the ‘box’ diagrams,

panels d) and e) in Fig. 25. In particular, Eqs. (352) and (358) in Appendix E

result from combining recoil-corrected reducible and irreducible diagrams, leading to

a magnetic moment which involves τi,z isospin structures. The operator derived in
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Ref. [4] has also a term proportional to (τ1×τ2)z. The latter would have been present

also in our operator, had we retained only irreducible diagrams in the evaluation of

the currents in panel d) and e) of Fig. 25.

The second difference is that the Sachs term is ignored in Ref. [46]. Of course, it

vanishes in two-body systems because of its dependence on R. However, in A > 2

systems the center-of-mass position of a nucleon pair will not generally coincide with

that of the nucleus, and therefore this term will contribute.

The derivation in Ref. [45] is carried out within the projection formalism of

Ref. [3]. The resulting expressions for the TPE currents, the only ones considered by

the authors of Ref. [45], are in agreement with those we obtained in this work.

V.2 MAGNETIC MOMENT FROM CONTACT AND TREE-LEVEL

CURRENTS

We start off by considering the magnetic moments due to the contact current of

minimal nature jN
3LO

CT,γ given in Eq. (124). Again, we can separate the magnetic

moment operator into Sachs µ
CT
Sachs and translationally invariant µ

CT,m
T terms

µ
CT,m = µ

CT
Sachs + µ

CT,m
T . (216)

The Sachs moment is given by

µ
CT
Sachs(R, r) = −i R

2
×
∫

dx x
[
ρ(x) , vCT2 + vCT2

P

]
(217)

where the momentum space expressions of the contact potentials vCT2 and vCT2
P are

given in Eqs. (42) and (98), respectively. Non vanishing terms of the commutator

entering the definition of Sachs moment arise from contributions to the contact po-

tential which depend on the momenta of the two nucleons. Specifically, insertion of

the explicit expression of the charge operator ρ into Eq. (217) leads to

µ
CT
Sachs(R, r) = −i e eN,1

R

2
×
[
r1 , v

CT2 + vCT2
P

]
+ 1 ⇋ 2

= −i e
2

(
1 +

τ1,z + τ2,z

2

)
R×

[
R , vCT2

P

]

− i e

4

τ1,z − τ2,z

2
R×

[
r , vCT2 + vCT2

P

]
. (218)

The equation above can be verified by evaluating (R/2)× jN
3LO

CTγ (q = 0), as indicated

in Eqs. (203) and (205). The P-dependent contact potential vCT2
P is expressed in
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terms the five LECs C∗
i listed in Eq. (99). This contact contribution to the potential

has been identified with boosts corrections to the LO contact potential and, as shown

in Eq. (218), is responsible for part of the Sachs magnetic moment. In the first set

of calculations presented later in this work, we have neglected contributions due to

vCT2
P (C∗

i = 0) and taken µ
CT
Sachs to be given in momentum space by

µ
CT
Sachs(R,k,K) =

e

4

τ1,z − τ2,z

2
R×

[
2 (C2 + C4 σ1 · σ2)K− i C5

σ1 + σ2

2
× k

+ C7 (σ1 σ2 ·K + σ1 ·K σ2)
]
. (219)

It is determined by C2, C4, C5, and C7, i.e. by the LECs of the momentum-dependent

terms in vCT2 which do not commute with the charge operator. These LECs are

known from the phase-shifts analysis reported in Sec. III.3.

The translationally invariant component of the magnetic moment is obtained by

direct evaluation of Eq. (206) with the contact current given in Eq. (124). Note that

only the terms proportional to C ′
4, C

′
5, and C ′

6 of the current jN
3LO

CTγ contribute to the

translationally invariant magnetic moment. Specifically, we find

µ
CT,m
T = −e

2
(C ′

4 + C ′
5) (σ1 + σ2) , (220)

where we have used the relation C ′
6 = −C ′

5 implied by C∗
1 = 0, and have dropped a

term proportional to (τ1,z + τ2,z) (σ1 +σ2), since it vanishes when acting on antisym-

metric two-nucleons states.

Finally, there is a contribution to the magnetic moment due to the contact current

of non-minimal nature, that is jCTγ,mn given in Eq. (273). This current is transverse

to the photon momentum, therefore the corresponding magnetic moment consists of

the translationally invariant contribution only, and is obtained by direct evaluation

of Eq. (206),

µ
CT,nm
T = −eC ′

15 (σ1 + σ2)− eC ′
16 (τ1,z − τ2,z) (σ1 − σ2) . (221)

The translationally invariant term due to minimal and non minimal contact cur-

rents is determined by two independent LECs, one of which multiplies an isoscalar

structure, while the other multiplies an isovector structure

µ
CT
T = µ

CT,m
T + µ

CT,nm
T = −eDS

1 (σ1 + σ2)− eDV
1 (τ1,z − τ2,z) (σ1 − σ2),(222)

where DS
1 = C ′

15 + (C ′
4 + C ′

5)/2, and DV
1 = C ′

16.
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The complete expression of the magnetic moment due to the contact currents at

N3LO is given by the Sachs contribution of Eq. (219), plus the translationally invari-

ant terms above. The Sachs term is completely determined by the LECs entering

the contact potential at N2LO, while the translationally invariant term involves two

additional unknown LECs.

At N3LO, there is an additional contribution to the magnetic operator due to the

tree-level current jN
3LO

tree given in Eq. (126). This current generates a translationally

invariant moment which reads

µ
tree
T = e

gA

F 2
π

[
(d ′

8 τ2,z + d ′
9 τ1 · τ2) k−d ′

21 (τ1×τ2)z σ1×k

]
σ2 · k
k2 +m2

π

+1 ⇋ 2 , (223)

and the determination of the LECs entering the equation above is discussed in Sec. VI.
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CHAPTER VI

RESULTS

In this work we derived a nuclear chiral potential up to order Q2 and consistent

electromagnetic currents up to eQ. The contributions entering the nuclear potential

are summarized in Fig. 7. It depends on nine LECs—namely CS, CT , and Ci with

i = 1, . . . , 7—associated with four-nucleon contact interactions. These LECs have

been fixed by fitting np S- and P-wave phase shifts up to 100 MeV energies in the

lab frame. The values obtained from the fits are reported in Table 4 for cutoffs Λ in

the range 500–700 MeV.

LO

N2LO(RC)

NLO

N3LO

FIG. 37: Diagrams illustrating the electromagnetic currents up to N3LO. Only one
among the possible time orderings is shown. Notation as in Fig. 20.

The contributions to the electromagnetic current operator are summarized in

Fig. 37. The LO (eQ−2) term, Eq. (104), results from the coupling of the exter-

nal photon field to the individual nucleons. It consists of the standard convection

and spin-magnetization currents of the nucleon. The NLO term involves seagull,

Eq. (106), and in-flight, Eq. (107), contributions associated with OPE. The N2LO

term, Eq. (108), represents the (Q/mN )2 relativistic correction to the LO one-body

current. In what follows, we denote this last contribution with N2LO(RC) as indi-

cated in the figure. The LO and N2LO currents have both isoscalar and isovector

components, while the OPE currents are purely isovector.

The contributions at N3LO are also shown in Fig. 37, where the last diagram rep-

resents contact currents of ‘minimal’, Eq. (124), and ‘non-minimal’ nature, Eq. (125),

derived in Sec. IV.2.1. The former involve LECs which are related to those entering

the nuclear potential, while the latter are expressed in terms of additional LECs
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unconstrained by the strong interaction.

The next to last diagram of Fig. 37 represents the tree-level OPE current involv-

ing the electromagnetic Hamiltonian H
(2)
γπNN of order eQ2 at the vertex indicated

by a full circle. The explicit expression for this current is given in Eq. (126), and

it involves LECs multiplying both isoscalar and isovector structures. The remain-

ing diagrams represent TPE currents at one loop, discussed in Sec. IV.2.3. These

have only isovector components, as can be inferred from their expressions given in

Eqs. (130)–(134) and Eqs. (137)–(138).

In what follows, we present calculations of reactions induced by the magnetic

moment operator µ associated with these currents. The LO and N2LO(RC) one-

body magnetic moment operators are completely determined by the experimental

values of the proton and neutron magnetic moments, respectively +2.793 and –1.913

in units of nuclear magnetons (n.m.). The NLO contribution involves the axial

coupling constant gA, and the pion decay amplitude Fπ, for which we adopt the

values listed in Table 3.

The two-body magnetic moment operator associated with the N3LO currents has

been derived in Chapter V. It has been separated into the Sachs’ contribution, which

is uniquely determined by the χEFT potential at order Q2, and a translationally

invariant contribution. In particular, the Sachs magnetic moment due to the TPE

current, Eq. (210), as well as contact currents of ‘minimal’ nature, Eq. (219), reads

µ
N3LO
Sachs = µ

loop
Sachs + µ

CT
Sachs

= − i
2
e (τ1 × τ2)z R×∇k v

2π
I (k) +

e

4

τ1,z − τ2,z

2
R

×
[
2 (C2 + C4 σ1 · σ2)K− i C5

σ1 + σ2

2
× k

+ C7 (σ1 σ2 ·K + σ1 ·K σ2)
]

(224)

where v2π
I (k) is the isospin-dependent part of the TPE chiral potential at order Q2

given in Eq. (211), and C2, C4, C5, and C7 are LECs entering the contact potential

at order Q2.

Currents at N3LO with pion loops generate a translationally invariant magnetic

moment which involves only known LECs, namely gA, Fπ, CS, and CT . We report
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here its expression

µ
loop
T =

e g2
A

8 π2F 4
π

τ2,z

[
F0(k) σ1 − F2(k)

kσ1 · k
k2

]

+
e g2

A

2 π2F 2
π

τ2,z (CS σ2 − CT σ1) + 1 ⇋ 2 , (225)

where the loop function G is defined as in Eq. (73), and F0 and F2 are given in

Eqs. (214) and (215), respectively. In the remainder of this chapter we denote with

N3LO(S-L) the contributions to the magnetic moment operator due to the Sachs

term of Eq. (224) and to the transitionally invariant component generated by the

one-loop TPE currents of Eq. (225). Note that the N3LO(S-L) operator has only

isovector components and involves known LECs.

Unknown LECs enter the translationally invariant component due to the contact

currents of ‘minimal’ and ‘non-minimal’ nature and to the tree-level current at N3LO.

The explicit expressions of the resulting magnetic moment operators due to these

currents are given in Eqs. (222) and (223), respectively, and read

µ
CT
T = −eDS

1 σ1−eDV
1 (τ1,z − τ2,z) σ1+1 ⇋ 2 , (226)

µ
tree
T = e

gA

F 2
π

[
(d ′

8 τ2,z + d ′
9 τ1 · τ2)k

− d ′
21 (τ1 × τ2)zσ1 × k

]
σ2 · k
k2 +m2

π

+ 1 ⇋ 2 , (227)

where DS
1 , DV

1 , d ′
8, d

′
9, and d ′

21 are the remaining unknown LECs to be determined

below. In the following we will refer to the terms in Eqs. (226) and (227) collectively

as N3LO(LECs). We also recall that there are no three-body contributions to the

magnetic moment operator occurring at N3LO.

In what follows, we present calculations of the magnetic moments of A = 2 and

3 nuclei and cross sections for radiative capture reactions in A = 2–4 systems. The

latter involve matrix elements induced by the magnetic moment operator. We will not

derive here the explicit expressions for the cross sections, we will instead extensively

refer to the derivations and calculational techniques adopted in Refs. [7, 8, 24].

In the next section, we complete the derivation of the the magnetic moment

operator by fixing the LECs entering the N3LO(LECs) contribution. Predictions

obtained with the resulting operator are discussed in Sec. VI.2.
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VI.1 M1 OBSERVABLES IN A=2–4 SYSTEMS: FIXING THE LECS

The calculations presented here are carried out in the hybrid approach, that is by eval-

uating the matrix elements of the χEFT magnetic moment (M1) operator between

nuclear wave functions obtained from realistic potentials. Nuclear wave functions

generated from the χEFT potential derived in Chapter III are not available at the

moment. It would be certainly interesting to perform fully consistent calculations

where both the nuclear interaction and electromagnetic currents are obtained within

the same χEFT theoretical framework. Nevertheless, the hybrid approach has been

widely exploited to study electroweak reactions in light nuclei [4, 46, 47]. It is un-

clear at this stage whether the inconsistency between the short-range behavior of the

realistic potential and that of the χEFT currents, intrinsic to hybrid calculations, is

only a conceptual issue of little numerical importance.

In order to have a realistic estimate of the model dependence of the results,

we use wave functions corresponding to two different nuclear Hamiltonians. The

wave functions for A=2 are derived from solutions of the Schrödinger equation with

the Argonne v18 (AV18) [11] or chiral N3LO (N3LO) [12] two-nucleon potentials.

Both these nuclear models describe the long-range component of the NN interaction

via OPE. At intermediate and short distances, the AV18 model parametrizes the

radial dependence of the NN interaction in terms of functions of two-pion-range and

shorter-range, whose strengths are adjusted to fit the NN data. It fits the np and pp

phase-shifts up to ∼ 350 MeV with a χ2 per datum close to 1. The N3LO potential

is derived within a χEFT formulation with pions and nucleons up to order Q4. It

involves 24 free parameters (LECs), which are fixed so as to reproduce np and pp

scattering phase-shifts up to ∼ 290 MeV with a χ2 per datum also close to 1.

Wave functions for A=3 and 4 nuclei are obtained from a Hamiltonian including,

in addition to the AV18 or N3LO two-nucleon, also a three-nucleon potential, the

Urbana-IX (UIX) [13] or the N2LO (N2LO) [14] model. The former describes the

three-nucleon potential in terms of a TPE three-nucleon term involving the exci-

tation of an intermediate ∆-resonance and a short-range term. Their strengths are

adjusted to reproduce the triton binding energy and the saturation density of nuclear

matter. The N2LO three-nucleon interaction is derived in a χEFT framework and

it is expressed in terms of two LECs which are constrained by reproducing the bind-

ing energies of A = 3 nuclei and triton β decay. The AV18/UIX and N3LO/N2LO

Hamiltonians provide an excellent description of three- and four-nucleon bound and
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scattering state properties, including binding energies, radii, and effective range ex-

pansions [48].

The operators in Eqs. (224)–(227), as well as those at NLO, need to be regularized.

We accomplish this by including a cutoff CΛ(k) = exp(−k4/Λ4), as discussed in

Sec. IV.5, and we study the sensitivity of the results with respect to variations of

Λ in the range between 500 MeV and 700 MeV. Thus, CΛ(k) removes momenta k

larger than (3–4)mπ in a theory retaining up to TPE mechanisms, and whose regime

of validity extends, therefore, up to ∼ 2mπ.

µd (n.m.) µS(
3He/3H) (n.m.)

AV18 N3LO AV18/UIX N3LO/N2LO
LO 0.8471 0.8542 0.4104 0.4190

N2LO(RC) 0.8400 0.8471 0.4038 0.4124
EXP 0.8574 0.4257

TABLE 7: Cumulative LO and N2LO(RC) contributions to the deuteron magnetic
moment (isoscalar combination of the trinucleons magnetic moments) obtained with
the AV18 (AV18/UIX) and N3LO (N3LO/N2LO) potential models.

We now turn our attention to the determination of the LECs DS
1 , DV

1 , d ′
8, d

′
9,

and d ′
21 entering the N3LO(LECs) M1 operator. As already discussed in Sec. IV.1,

the d ′
i could be fitted to pion photoproduction data on a single nucleon or related

to hadronic coupling constants by resonance saturation arguments (although gωNN

and gρNN are rather poorly known). This latter procedure is used in a series of

hybrid calculations, based on the M1 operators derived in Ref. [4], of the np, nd,

and n 3He radiative captures, and magnetic moments of A=2 and 3 nuclei [4, 46].

Here, however, we assume d ′
21/d

′
8 = 1/4 as suggested by the ∆-resonance saturation

mechanism, and rely on nuclear data to constrain the remaining LECs.

With the additional constraint provided by the resonance saturation argument,

the number of unknown LECs is reduced to four. Two of these LECs, namely DS
1

and DS
2 = d′9, multiply isoscalar structures, while the remaining two, that is DV

1 and

DV
2 = d ′

21 = d ′
8/4, are related to the isovector component of the N3LO(LECs) M1

operator. We fix these LECs by reproducing the experimental values of two isoscalar

observables, i.e. the deuteron and the isoscalar combination of the trinucleon M1’s,

and two isovector observables, i.e. the isovector combination of the trinucleon M1’s

and the np cross section at thermal neutron energies.
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Λ dS
1 dS

2 × 102

500 –3.18 (–2.38) –8.85 (–0.225)
600 –7.10 (–5.30) –2.90 (9.20)
700 –13.2 (–9.83) 6.64 (20.4)

TABLE 8: Adimensional values of the isoscalar LECs corresponding to cutoff pa-
rameters Λ in the range 500–700 MeV obtained for the AV18/UIX (N3LO/N2LO)
Hamiltonian. See text for explanation.

µV(3He/3H) (n.m.)
AV18/UIX N3LO/N2LO

Λ (MeV) 500 600 700 500 600 700
LO –2.159 –2.159 –2.159 –2.194 –2.194 –2.194

NLO –2.382 –2.413 –2.430 –2.419 –2.436 –2.434
N2LO(RC) –2.353 –2.384 –2.401 –2.394 –2.408 –2.410
N3LO(S-L) –2.284 –2.332 –2.377 –2.337 –2.359 –2.375

EXP –2.553

TABLE 9: Cumulative LO, NLO, N2LO(RC), N3LO(S-L) contributions to the isovec-
tor combination of the trinucleons magnetic moments obtained with the AV18/UIX
and N3LO/N2LO potential models.

The deuteron has total isospin T = 0, while 3He and 3H are (almost) pure T = 1/2

states, with isospin projection Tz = +1/2 and −1/2, respectively. The isoscalar

combination of the trinucleon magnetic moments is defined as

µS(3He/3H) =
1

2

[
µ(3He) + µ(3H)

]
, (228)

where µ(3He) and µ(3H) are the helium and triton M1’s. As already mentioned, only

the one-body LO and N2LO(RC) M1 operators contribute to isoscalar observables. In

Table 7 we list the experimental value of µd [µS(3He/3H)], along with the cumulative

LO and N2LO(RC) contributions obtained with the AV18 and N3LO (AV18/UIX

and N3LO/N2LO) nuclear models. In both cases, the N2LO(RC) correction has

opposite sign with respect to the LO contribution, so that its inclusion increases the

differences between the measured and calculated values. This (Q/mN )2 corrections
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are (in magnitude) about 1% of the LO contributions. These isoscalar observables

present a rather weak dependence on the Hamiltonian utilized to generate the nuclear

wave functions.

The LECs DS
1 , and DS

2 entering the N3LO(LECs) isoscalar M1 operator are ob-

tained by fitting the experimental values of µd, and µS(3He/3H) listed in Table 7. In

Table 8 we report the values of these LECs given in units of powers of Λ, i.e. we

have defined DS
1 = dS

1 /Λ
4, dS

2 = DS
2/Λ

2.

σγ
np (mb)

AV18 N3LO
Λ (MeV) 500 600 700 500 600 700

LO 304.6 304.6 304.6 305.8 305.8 305.8
NLO 319.3 320.9 321.8 320.6 321.1 321.2

N2LO(RC) 317.7 319.2 320.1 319.1 319.8 319.8
N3LO(S-L) 314.3 316.6 318.8 316.1 317.2 318.0

EXP 332.6(7)

TABLE 10: Cumulative LO, NLO, N2LO(RC), N3LO(S-L) contributions to the
cross section for the radiative capture of thermal neutron on proton obtained with
the AV18/UIX and N3LO/N2LO potential models. The experimental value from
Ref. [49].

Next, we consider the isovector observables. The isovector combination of the

trinucleon magnetic moments is given by

µV(3He/3H) =
1

2

[
µ(3He)− µ(3H)

]
. (229)

The cumulative contributions up to N3LO(S-L) correction included are reported in

Table 9. We note that also in this case the RC correction at N2LO has opposite sign

with respect to the LO contribution. The NLO correction has the same sign as the

LO term, while the N3LO(S-L) has opposite sign.

The last isovector observable considered to determine the LECs is the cross section

for the radiative capture of thermal neutrons on protons (σγ
np). At these low energies,

the np → dγ reaction occurs entirely through the 1S0 scattering state, to allow the

colliding proton and neutron to come close enough to be able to fuse. Since the

initial scattering state is characterized by isospin T = 1 this process occurs via the

isovector component of the M1 operator. The Sachs component of the N3LO(S-L)
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Λ dV
1 dV

2

500 –11.3 (–11.4) 5.18 (5.82)
600 –12.9 (–23.3) 6.55 (6.85)
700 –1.70 (–46.2) 8.24 (8.27)

TABLE 11: Adimensional values of the isovector LECs corresponding to cutoff pa-
rameters Λ in the range 500–700 MeV obtained for the AV18/UIX (N3LO/N2LO)
Hamiltonian. See text for explanation.

M1 operator does not contribute to the np cross section, since it vanishes in A = 2

systems.

The cross section associated to this process is given by [24]

σγ
np = (4π)2 σ0 |M1(

1S0) |2 , (230)

where σ0 is defined as

σ0 =
α

2 π v

q

1 + q/md
. (231)

Here α is the fine-structure constant, md is the deuteron mass and v is the np relative

velocity. In Table 10 we list the cumulative contributions to the np cross section.

The largest contribution to the cross section is given by the LO term. The OPE M1

contribution at NLO has the same sign as the LO one, while both the N2LO(RC)

and N3LO(S-L) have opposite sign.

The LECs DV
1 and DV

2 are obtained by reproducing the experimental σγ
np and

µV(3He/3H) given in Tables 9 and 10. The values obtained from this fit are listed in

Table 11, where again we have defined DV
1 = dV

1 /Λ
4 and DV

2 = dV
2 /Λ

2.

The analysis reported in this section is summarized in Fig. 38 where we show

results obtained by including cumulatively the contributions at LO, NLO, N2LO(RC),

and N3LO(S-L) for µd and µS(3He/3H) (left panels), and for σγ
np and µV(3He/3H)

(right panels). The band represents the spread in the calculated values corresponding

to the two Hamiltonian models considered here (AV18/UIX and N3LO/N2LO). The

sensitivity to short-range mechanisms (effective at internucleon separations less than

∼ (2mπ)−1) as encoded in the cutoff CΛ(k) and in the rather different short-range

behaviors of the adopted potentials, remains quite weak for all observables. Of

course, taking into account the N3LO(LECs) contribution with the LEC values listed
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FIG. 38: Results for the deuteron and trinucleon isoscalar and isovector magnetic
moments, and np radiative capture, obtained by including cumulatively the LO,
NLO, N2LO, and N3LO(S-L) contributions. See text for discussion.

in Tables 8 and 11 reproduces the experimental data represented by the black band

(to accommodate errors, although these are negligible in the present case). We

observed that, the dominant contribution to the calculated M1’s and np cross section

is provided by the LO M1 term.

VI.2 RADIATIVE CAPTURES ON DEUTERON AND 3HE

Neutron and proton radiative captures on 2H, 3H and 3He are particularly challenging

from the standpoint of nuclear few-body theory. This can be appreciated by compar-

ing the measured values for the cross sections of thermal neutron radiative capture on
1H, 2H, 3He. Their respective values in mb are: (332.6±0.7) [49], (0.508±0.015) [50],

and (0.055±0.003) [51]. Thus, in going from A=2 to 4 the cross section has dropped

by almost four orders of magnitude. As discussed in the previous section, these pro-

cesses are induced by M1 transitions between the initial two-cluster state in relative

S-wave and the final bound state. The 3H and 4He wave functions, respectively Ψ3

and Ψ4, are approximately eigenfunctions of the LO one-body M1 operator µ
LO,
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namely µLO
z Ψ3 ≃ µpΨ3 and µLO

z Ψ4 ≃ 0, where µp=2.793 n.m. is the proton magnetic

moment—the experimental value of the 3H magnetic moment is 2.979 n.m, while
4He has no magnetic moment. These relations would be exact, if the 3H and 4He

wave functions were to consist of the symmetric S-wave term only. In fact, tensor

components in the nuclear potentials generate significant D-state admixtures, that

partially spoil this eigenstate property. To the extent that it is approximately satis-

fied, though, the matrix elements 〈Ψ3 |µLO
z |Ψ1+2〉 and 〈Ψ4 |µLO

z |Ψ1+3〉 vanish due to

orthogonality between the initial and final states. This orthogonality argument fails

in the case of the deuteron, since then µLO
z Ψ2 ≃ (µp − µn)φ2(S)χ0

0 η
1
0 , where χS

MS

and ηT
MT

are two-nucleon spin and isospin states, respectively. The M1 operator can

therefore connect the large S-wave component φ2(S) of the deuteron to the T=1 1S0

n-p scattering state—the orthogonality between the latter and the deuteron follows

from the orthogonality between their respective spin-isospin states.

This suppression at LO has two main consequences. The first is that the n-d, p-d,

n-3He, and p-3H radiative (as well as p-3He weak) captures are very sensitive to small

components in the wave functions, particularly the D-state admixtures generated by

tensor forces. The second consequence is that these observables are sensitive to

many-body terms in the electromagnetic (and weak) current operator.

There have been in the past several calculations of these processes in the conven-

tional framework—referred to as the standard nuclear physics approach (SNPA)—

see [10] and references therein. In the recent study of Ref. [9], the electromag-

netic current operator includes, in addition to the standard convection and spin-

magnetization terms of individual protons and neutrons, also two- and three-body

terms, constructed from, respectively, the two- and three-nucleon potentials so as to

satisfy exactly current conservation with them. The method by which this is achieved

has been improved over the years [52], and its latest implementation is discussed at

length in Ref. [9]. It is not unique, since the continuity equation relation puts no con-

straints on the transverse component of the current. Nevertheless, it does generate

two- and three-body terms, whose behavior, particularly at short range, is consistent

with that of the corresponding potentials. This behavior in the latter is ultimately

“determined” by reproducing a set of experimental two- and three-nucleon scattering

data and binding energies.

The SNPA currents have been shown to provide a very satisfactory description

of a wide variety of electronuclear properties [7, 8, 9, 53, 54]. Indeed, we show below
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a set of up-to-date predictions for the observables of interest here.

Having fully constrained the χEFTM1 operator derived in the present work up to

N3LO, we are now in a position to present predictions for the nd and n 3He radiative

capture cross sections, denoted as σγ
nd and σγ

n 3He, and the photon circular polarization

parameter Rc resulting from the capture of polarized neutrons on deuterons.

σγ
nd (mb) Rc

AV18/UIX
Λ (MeV) 500 600 700 500 600 700

LO 0.225 0.225 0.225 –0.087 –0.087 –0.087
NLO 0.343 0.369 0.385 –0.372 –0.398 –0.410

N2LO(RC) 0.314 0.339 0.353 –0.334 –0.365 –0.381
N3LO(S-L) 0.265 0.298 0.334 –0.241 –0.309 –0.360

N3LO(LECs) 0.505 0.507 0.508 –0.468 –0.467 –0.467
EXP 0.508±0.015 -0.42± 0.03

TABLE 12: Cumulative contributions to the cross section σγ
nd and photon polar-

ization parameter Rc of the reaction 2H(n, γ)3H at thermal energies, obtained with
the AV18/UIX Hamiltonian model and cutoff values in the range 500-700 MeV. The
experimental values for σγ

nd and Rc are from Ref. [50] and Ref. [55], respectively.

The 2H(n, γ)3H reaction at thermal energies proceeds through S-wave capture

predominantly via M1 transitions from the initial doublet 2S1/2 and quartet 4S3/2

n-d scattering states to the final Jπ = (1/2)+ state. In addition, there is a small

contribution due to an electric quadrupole transition from the initial quartet state.

We adopt here the notation and conventions of Ref. [8] and define

m22 = M̃
0 1/2 1/2
1 , m44 = M̃

0 3/2 3/2
1 , e44 = Ẽ

0 3/2 3/2
2 , (232)

where M̃LSJ
ℓ and ẼLSJ

ℓ are the reduced matrix elements (RME’s) of the magnetic

and electric multipole operators of order ℓ, normalized as in Eq. (6.3) of Ref. [8]. In

terms of these RME’s, the capture total cross section is given by

σγ
nd =

2

9

α

vrel

q3

4m2
N

(
|m22|2 + |m44|2 + |e44|2

)
, (233)

where α = e2/(4π) is the fine structure constant, vrel is the d-n relative velocity,

q is the energy of the emitted γ ray, and mN is the nucleon mass. Similarly, the

circular polarization PΓ resulting from S-wave capture of a neutron polarized along
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the direction Pn is proportional to the parameter Rc [8], i.e. PΓ = Rc Pn · q̂, where

Rc = −1

3

[
1 − (7/2)|m44|2 +

√
8 Re(m22m

∗
44)

|m22|2 + |m44|2 + |e44|2

+
(5/2)|e44|2 +

√
24 Im(m22e

∗
44)−

√
3 Im(m44e

∗
44)

|m22|2 + |m44|2 + |e44|2
]
. (234)

In Table 12 we list the cumulative contributions to the nd cross section and

the Rc parameter obtained with the AV18/UIX nuclear model only. As we have

already mentioned, this reaction is dominated by many-body components in the

current operator. This trend is confirmed here, in fact the LO contribution to the

total cross section is only about ∼ 44% of the measured value. The NLO correction

adds up to the LO contribution, while the N2LO(RC) and N3LO(S-L) corrections

have opposite sign. We also note that the N3LO(LECs) correction is of the same

order as the correction occurring at NLO. The calculated cross section is in excellent

agreement with the experimental data and shows a negligible cutoff dependence. The

Rc parameter is 10% larger (in magnitude) than the experimental value.

σγ
n3He (µb)

AV18/UIX N3LO/N2LO
Λ (MeV) 500 600 700 500 600 700

LO 15.2 15.2 15.2 10.6 10.6 10.6
NLO 3.13 9.43 14.5 5.95 10.2 11.5

N2LO(RC) 0.65 2.03 4.38 0.91 2.87 3.56
N3LO(S-L) 7.56 1.11 1.95 1.36 0.04 0.38

N3LO(LECs) 44.4 46.0 47.6 48.3 52.9 56.6
EXP 55 ± 3

TABLE 13: Cumulative contributions to the cross section σγ
n3He of the reaction

3He(n, γ)4H at thermal energies, obtained with the AV18/UIX and N3LO/N2LO
Hamiltonian models and cutoff values in the range 500-700 MeV. The experimental
values for σγ

n3He is from [51].

The n 3He→4He γ process involves a transition from an initial n-3He 3S1 scat-

tering state to the final Jπ = 0+ 4He ground state, and therefore is purely M1. In

Table 13 we show the cumulative contributions to the cross section obtained with the

AV18/UIX and N3LO/N2LO models. The LO contribution provides only ∼ 18% of

the calculated cross section. We note that the matrix element at NLO is of opposite

sign and twice as large (in magnitude) compared to that at LO, hence σγ
n 3He(LO)
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and σγ
n 3He(LO + NLO) are about the same. The N2LO and N3LO(S-L) corrections

exhibit the same pattern discussed for the nd cross section. Due to the significant

suppression at LO, the contributions at LO, NLO and N3LO(LECs) are of the same

order.

The discussion above is summarized in Fig. 39 where we show the predictions ob-

tained with the χEFT M1 operator derived in the present work. The experimental

data (black bands) are from Ref. [50] for nd and Ref. [51] for n 3He. In the right

panel, the band represents the spread in the calculated values corresponding to the

AV18/UIX and N3LO/N2LO models. Results obtained with the complete N3LO

operator are shown by the orange band labeled N3LO(LECs), and are in very sat-

isfactory agreement with data. Their sensitivity to the cutoff is negligible (∼ 10%)

for the nd (n 3He) capture. These processes are strongly suppressed at LO: the cal-

culated σγ
nd(LO) and σγ

n 3He(LO) are less than half and a factor of five smaller than

the measured values. For both nd and n 3He, the N2LO and N3LO(S-L) corrections

exhibit the same pattern discussed in connection with Fig. 38. The N3LO(LECs)

contributions are large and crucially important for bringing theory into agreement

with experiment.

In Fig. 39 we also show results obtained in the conventional SNPA with the

AV18/UIX Hamiltonian model. In the left panel of Fig. 39 we indicate with the green

squared labeled SNPA the calculated 2H(n, γ)3H cross section obtained in Ref. [9].

The pink square labeled SNPA(RC) denotes the result obtained by including the RC

to the LO one-body current operator (i.e., the χEFT N2LO operator). This contri-

bution had been neglected in all previous SNPA studies of electronuclear properties.

The SNPA(RC) result is in agreement with the experimental data (and the χEFT

predictions). In the right panel of Fig. 39 the green square indicates the calculated
3He(n, γ)4He cross section obtained with the latest generation of nuclear wave func-

tions and the currents of Refs. [7, 8, 9]. With these new set of wave functions, the

SNPA formulation overpredicts the experimental cross section by ∼ 14% (as opposed

to ∼ 60% as found in [7]). The addition of the RC correction leads to the result

labeled SNPA(RC), which is 25% smaller relative to the experimental data.

Song et al. (2009) [46] and Lazauskas et al. [46] have reported values for the nd

and n 3He capture cross sections about 6% and 15% smaller than measured, with a

significantly larger sensitivity (estimated at ≃ 15% for both processes) to the cutoff.

These calculations are based on the M1 operator derived in [4], which differs from
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the N3LO M1 operator constructed here (see discussion in Sec. V.1). Furthermore,

these authors rely on the resonance saturation to constrain the LECs entering the

µ
N3LO
tree .
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FIG. 39: Results for σγ
nd (left top panel), σγ

n 3He (right top panel), and Rc (left bot-
tom panel), obtained by including cumulatively the LO, NLO, N2LO, N3LO(S-L),
and N3LO(LECs) contributions. Also shown are predictions obtained in the stan-
dard nuclear physics approach (squares labeled SNPA and SNPA(RC)). See text for
discussion.
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CHAPTER VII

SUMMARY AND CONCLUSIONS

In this thesis we have derived a two-body nuclear potential and consistent two-

body electromagnetic currents in a χEFT framework, in which pions and nucleons

are retained as explicit degrees of freedom. The potential includes up to order Q2

(N2LO) terms in the chiral expansion. At LO, it consists of OPEP plus a contact

term which depends on two LECs, and at N2LO, it is described in terms of TPE

and contact interactions. The latter involve seven additional LECs. The LECs at

LO and N2LO have been fixed by fitting the np S- and P-wave phase shifts up to

100 MeV energies in the lab frame. The Hamiltonians involving two gradients acting

on the nucleons’ field generate contributions which depend on the center-of-mass

momentum of the two nucleons. These terms represent boost corrections to the LO

contact potential [40]. They vanish in two-body systems, however, they must be

taken into account in χEFT calculations of nuclei with mass number A > 2.

The current operator has been derived up to order eQ (N3LO). The LO contri-

bution is given by the one-body operator originating from the convection and spin

magnetization terms of the individual nucleons. The first correction to this picture,

in which the external photon interacts individually with the nucleus’ constituents, is

represented by the OPE currents. The N2LO contribution consists of a relativistic

correction to the (one-body) LO current. Some of the N3LO contributions are gener-

ated by TPE and loop corrections to the (tree-level) OPE currents. The remaining

ones arise from a tree-level current involving a ‘non-minimal’ electromagnetic interac-

tion Hamiltonian of order eQ2, and contact currents of ‘minimal’ and ‘non-minimal’

nature. The N3LO electromagnetic current operator involve LECs which have been

constrained by fits to the phase shifts, and additional LECs have been determined

by reproducing electromagnetic observables as specified below.

The derivation of the potential and currents has been carried out in TOPT with

the additional prescription of including recoil-corrected reducible contributions along

with the irreducible ones. This method leads to N3LO currents which satisfy the

continuity with the N2LO chiral potential. We have also shown that there are no

three-nucleon potentials entering at N2LO, as well as no three-body electromagnetic

currents at N3LO. Several aspects of the derivation have been discussed in detail,
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including a comparison with previous derivations using different formalisms. In par-

ticular, we have found that the formalism defined in the present work and the unitary

transformation method utilized by Epelbaum et al. [3] and Koelling et al. [45] lead

to results which are in agreement with each other. The TPE currents have also been

derived in covariant perturbation theory by Park and collaborators in Ref. [4]. The

authors retained only irreducible contributions in the evaluation of the transition

amplitude, and their results are different from those obtained in this work.

The N3LO electromagnetic current operator has been utilized to study low-energy

electromagnetic transitions induced by the magnetic dipole (M1) operator. The

matrix elements of the M1 operator have been evaluated by using accurate wave

functions obtained from the AV18/UIX [11, 13] or N3LO/N2LO [12, 14] realistic

Hamiltonian models. The M1 operators have been regularized via a momentum

cutoff Λ and the sensitivity of the calculated observables with respect to variations

of Λ in the range of 500–700 MeV has been analyzed. We have considered the M1’s

of A = 2 and 3 nuclei, and the cross sections for the radiative capture of thermal

neutrons on p, d, and 3He. The experimental values for the M1’s and cross section of

the 1H(n,γ)2H reaction have been utilized to completely constraint the M1 operator

at N3LO. The latter involves LECs which, as mentioned before, are not determined by

the fits of the chiral potential to the NN scattering data. Predictions obtained with

this (fully constrained) M1 operator for the 2H(n,γ)3H cross section are in excellent

agreement with the experimental data, and show a negligible cutoff dependence. The
3He(n,γ)4He cross section exhibits a ∼ 5% (∼ 15%) variation with the AV18/UIX

(N3LO/N2LO) model, as the cutoff is varied from 500 to 700 MeV, but it is still in

good agreement with the experimental datum. These processes are highly suppressed

at LO, in particular, the calculated 2H(n,γ)3H and 3He(n,γ)4He cross sections provide

only about ∼ 44% and ∼ 18% of the measured values. The contributions at N3LO

are found to be large, and indeed the contact currents are crucial for reproducing the

experimental data.

We have compared the results obtained with the chiral M1 operator with those

obtained with the SNPA currents used in Refs. [7, 8, 9]. The SNPA current operator

includes, in addition to the one-body term also present in the chiral current at LO,

also two- and three-body current constructed so as to satisfy the continuity equation

with the AV18 two- and UIX three-nucleon potentials, respectively. The 2H(n,γ)3H

cross section obtained with the SNPA currents overpredicts the experimental data
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by ∼ 10%, and the inclusion of the relativistic correction to the one-body current

operator (i.e. the N2LO current), brings the SNPA prediction in agreement with the

experimental data. The cross section of the 3He(n,γ)4He reaction calculated with

the SNPA currents (SNAP currents plus N2LO relativistic correction) overpredicts

(underpredicts) the experimental data by ∼ 10% (∼ 25%). This relativistic correc-

tion had been neglected in previous SNPA studies of radiative captures. Due to the

suppression of the leading one-body contribution, it plays an important role in these

observables.

The work presented in this thesis is the first stage of a research program aimed

at studying the electromagnetic properties of light nuclei within a χEFT framework.

The chiral current operator provides a very good description of the electromagnetic

observables we have considered so far. Charge radii, and magnetic and charge form

factors of nuclei at low values of the momentum transfer can also be studied within the

formalism developed here. To this end, we are currently in the process of completing

the derivation of the chiral charge operator.

Another interesting line of research would involve the explicit inclusion of ∆-

isobars degree of freedom in the theory. We have already made some progress on this

project: formal expressions of the chiral currents at N3LO with explicit ∆-isobars

have been derived in Ref. [42]. However, completion of this program requires one to

also construct the two- and three-body potential in the same framework, as well as

three-body currents, which would now enter at N3LO.

Finally, in order to investigate weak transitions in nuclei, such as β-decays and

electron-capture rates, weak current operators need to be derived. The weak (axial)

current has been constructed in Ref. [5] in covariant perturbation theory, neglecting

recoil corrections. However, in view of the differences discussed in connection to the

electromagnetic current operator, it would be interesting to perform the calculation

in the TOPT framework developed here.
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APPENDIX A

INTERACTION HAMILTONIANS

In this appendix we list the explicit expressions of the nuclear and electromagnetic

Hamiltonians involved in the calculation of the nuclear potential and electromagnetic

current operators. The notation utilized in this appendix has been defined Sec. II.1.

A.1 PION AND NUCLEON INTERACTION HAMILTONIANS

The interaction Hamiltonians involving nucleon and pion fields are derived from the

effective chiral Lagrangian approach formulated in Refs. [1, 2]. The Hamiltonians

implied by the πNN , and ππNN χEFT Lagrangians read

HπNN =
gA

Fπ

∫
dxN †(x) [σ · ∇πa(x)] τaN(x) , (235)

HππNN =
1

F 2
π

∫
dxN †(x) [π(x)×Π(x)] · τN(x) , (236)

where σa and τa are the spin and isospin Pauli matrices.

The four-fermion contact interaction of order Q0 is expressed in terms of the two

LECs CS, and CT ,

HCT0 =
∑

α=S,T

Cα

2

∫
dx
[
N †(x)ΓαN(x)

]
·
[
N †(x)ΓαN(x)

]
, (237)

where we have defined

ΓS = 1 , ΓT = σ . (238)

The last set of interaction Hamiltonians consists of four-nucleon contact terms

involving two gradients acting on the nucleons’ fields [2, 3]:

HCT2,1 = C ′
1

∫
dx
[[
N †∇N

]2
+ [(∇N)†N ]2

]
, (239)

HCT2,2 = C ′
2

∫
dx
[
N †∇N

]
·
[
(∇N)†N

]
, (240)

HCT2,3 = C ′
3

∫
dx
[
N †N

] [
N †∇2N +

[
∇2N

]†
N
]
, (241)

HCT2,4 = i C ′
4

∫
dx

[[
N †∇N

]
·
[
(∇N)† × σN

]
+
[
(∇N)†N

]
·
[
N †

σ ×∇N
]]
,(242)

HCT2,5 = i C ′
5

∫
dx
[
N †N

] [
(∇N)† · σ ×∇N

]
, (243)
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HCT2,6 = i C ′
6

∫
dx
[
N †

σN
]
·
[
[∇N ]† ×∇N

]
, (244)

HCT2,7 = (C ′
7δikδjl + C ′

8δilδkj + C ′
9δijδkl)∫

dx

[[
N †σk∂iN

] [
N †σl∂jN

]
+
[
(∂iN)† σkN

] [
(∂jN)† σlN

]]
,(245)

HCT2,8 = (C ′
10δikδjl + C ′

11δilδkj + C ′
12δijδkl)∫

dx
[
N †σk∂iN

][
(∂jN)† σlN

]
, (246)

HCT2,9 =

(
1

2
C ′

13 (δikδjl + δilδkj) + C ′
14δijδkl

)

∫
dx
[
(∂iN)† σk∂jN + (∂jN)† σk∂iN

] [
N †σlN

]
. (247)

For brevity the spatial dependence of the nucleon fields has been suppressed.

Finally, when discussing the renormalization of the two-body currents at tree level

in Sec. IV.2.4, we also need to consider the following Hamiltonians involving three-

and four-pion interactions,

H3πNN = − gA

F 3
π

∫
dxπ

2(x)N †(x) [σ · ∇πa(x)] τaN(x) , (248)

H4π =
1

2F 2
π

∫
dx

[
[
π

2(x)Π2(x)−π
2(x)∇πa(x) · ∇πa(x)+h.c.

]
−m2

π

[
π

2(x)
]2
]
,

(249)

obtained by including corrections up to π
2(x)/F 2

π in the expansion of D−1 factors,

where D ≡ 1 + π
2(x)/F 2

π , entering the chiral Lagrangians [1].

A.2 ELECTROMAGNETIC INTERACTIONS

In this section we list the electromagnetic interaction Hamiltonians of ‘minimal’ and

‘non-minimal’ nature.

A.2.1 Minimal Electromagnetic Hamiltonians

The ‘minimal’ Hamiltonians are obtained from the strong Hamiltonians by gauging

the pion and nucleon derivative couplings:

∇π∓(x) → [∇∓ i eA(x)]π∓(x) , (250)

∇N(x) → [∇− i e eNA(x)]N(x) , (251)



104

where e > 0 is the charge, eN = (1 + τz)/2, and A(x) is the photon field given

in Eq. (15). As an example, we discuss more in detail the derivation of the γππ

interaction. The free pion Hamiltonian reads

Hπ =

∫
dx
[
Π+(x) Π−(x) +∇π+(x) · ∇π−(x) +m2

π π+(x) π−(x)
]

+
1

2

∫
d
[
x Π2

z(x) +∇2πz(x) +m2
ππ

2
z(x)

]
, (252)

where we have separated the charged from the neutral pion field components. Mini-

mal substitution into the charged pion derivative couplings leads to

Hπ → Hπ +Hππγ = Hπ −
∫
dxA(x) · jπ(x)

= Hπ + i e

∫
dxA(x) · [π+(x)∇π−(x)−∇π+(x)π−(x)] , (253)

where we have kept terms linear in the vector field A(x), and jπ(x) is the pion current

defined as

jπ(x) = −i e [π+(x)∇π−(x)−∇π+(x)π−(x)] . (254)

In terms of the isospin cartesian components πa, the γππ Hamiltonian is then given

by

Hππγ = −e ǫabz

∫
dxA(x) · [∇πa(x)] πb(x) . (255)

Similarly, minimal substitution in the pion derivative couplings entering the

Hamiltonians of Eqs.(235)-(236) and Eqs. (248)-(249) leads to the corresponding

electromagnetic interaction Hamiltonians

HγπNN = −egA

Fπ
ǫabz

∫
dxA(x) ·N †(x) σ τaN(x) πb(x) , (256)

HγππNN = − e

2mN

1

F 2
π

∫
dxA(x) ·

[
N †(x)

[
i (
−→∇ −←−∇) + σ × (

−→∇ +
←−∇)
]
τaN(x)

]

×
[
πa(x)πz(x)− δa,zπ

2(x)
]
, (257)

Hγ 3πNN = e
gA

F 3
π

ǫabz

∫
dxA(x) ·N †(x) σ τaN(x) πb(x) π

2(x) , (258)

Hγ 4π = e
2

F 2
π

ǫabz

∫
dxA(x) · [∇πa(x)] πb(x)π2(x) . (259)

The electromagnetic Hamiltonians from four-nucleon contact interactions are ob-

tained by minimal substitution in the derivatives acting on the nucleon’ fields entering
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Eqs.(239)-(247):

HCTγ,1 = −i e C ′
1

∫
dxA ·

[
[N †(
−→∇ −←−∇)N ](N †eNN)

+ (N †eNN)[N †(
−→∇ −←−∇)N ]

]
, (260)

HCTγ,2 = −i e C ′
2

∫
dxA ·

[
(N †eNN)

[
(∇N)†N

]
− (N †∇N)(N †eNN)

]
,(261)

HCTγ,3 = −i e C ′
3

∫
dxA · (2N †N)[N †(

−→∇ −←−∇)eNN ] , (262)

HCTγ,4 = eC ′
4

∫
dxA ·

[
[N †(
−→∇ +

←−∇)N ]× (N †
σ eNN)

+(N † eNN)[N †(
−→∇ +

←−∇)× σN ]
]
, (263)

HCTγ,5 = eC ′
5

∫
dxA · (N †N)[N †(

−→∇ +
←−∇)× σ eNN ] , (264)

HCTγ,6 = eC ′
6

∫
dxA · (N †

σN)× [N †(
−→∇ +

←−∇)eNN ] , (265)

HCTγ,7 = −i e (C ′
7 δik δjl + C ′

8 δil δkj + C ′
9 δij δkl )

×
∫

dx
[
Aj [N †(

−→
∂i −

←−
∂i ) σkN ](N † σl eNN)

+Ai (N
† σk eNN) [N †(

−→
∂j −

←−
∂j ) σlN ]

]
, (266)

HCTγ,8 = i e (C ′
10 δik δjl + C ′

11 δil δkj + C ′
12 δij δkl)

×
∫

dx
[
Aj (N † σk ∂iN) (N † σl eNN)

−Ai (N
† σk eNN)[(∂jN)† σl N ]

]
, (267)

HCTγ,9 = i e

(
1

2
C ′

13 (δik δjl + δil δkj ) + C ′
14 δij δkl

)

×
∫

dx
[
Aj [N †(

−→
∂i −

←−
∂i ) σk eNN ](N † σl N)

+Ai [N
†(
−→
∂j −

←−
∂j ) σk eNN ](N † σl N)

]
. (268)

A.2.2 Non-minimal Electromagnetic Hamiltonians

The interactions of individual nucleons with the electromagnetic field are described

by the following Hamiltonian:

HγNN =
e

2mN

∫
dxN †(x)

[
i eN

[
−←−∇ ·A(x) + A(x) · −→∇

]

− µN σ · ∇ ×A(x)

]
N(x) , (269)
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with

κN = (κS + κV τz)/2 , µN = eN + κN , (270)

where κS and κV are the isoscalar and isovector combinations of the anomalous

magnetic moments of the proton and neutron (κS = −0.12 n.m. and κV = 3.706

n.m.). The expression in Eq. (269) results from considering the non-relativistic limit

of the effective Hamiltonian with non-minimal couplings

HR
γNN = e

∫
dxψN (x)

[
eN A

µ(x)γµ +
κN

4mN

σµνF
µν(x)

]
ψN(x) , (271)

where ψN(x) is the spinor fields describing the nucleon, and F νλ(x) is the electro-

magnetic field tensor. The Bjorken and Drell conventions [56] are used for relativistic

four-vectors, γ-matrices, and Dirac spin-1/2 spinors, except that the latter are taken

to be normalized as u†(p, s)u(p, s) = 1.

In addition to the one-body electromagnetic Hamiltonians, there is a γπNN

coupling Hamiltonian involving gradients acting on the pion field and on the vector

potential respectively [6], whose expression is

H
(2)
γπNN =

e

Fπ

∫
dxN †(x)

[
d ′

8∇πz(x) + d ′
9 τa∇πa(x)

− d ′
21 ǫzab τa σ ×∇πb(x)

]
N(x) · ∇ ×A(x) , (272)

and d ′
8, d

′
9, and d ′

21 are related to the original couplings given by Fettes et al. [6] via

d ′
8 = 8 [d8 + gA/(64m2

N)] and similarly for d ′
9, and d ′

21 = 2 d21 + d22.

Finally, there is a set of contact non-minimal electromagnetic interactions Hamil-

tonians involving two additional LECs [21].

HCTγ,nm =
e

2

∫
dx
[
C ′

15N
†σkN N †N

+ C ′
16

(
N †σk τzN N †N −N †σkN N †τzN

) ]
ǫijk Fij . (273)
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APPENDIX B

STRONG AND ELECTROMAGNETIC VERTICES

The interaction Hamiltonians in Appendices A.1 and A.2 are assumed to be normal-

ordered. Explicit expressions for the associated vertices are easily derived (these

expressions include the 1/
√

2ωki
factors from pion fields) :

B.1 STRONG-INTERACTION VERTICES

〈p′, χ′;k, a | HπNN | p, χ〉 = −i gA

Fπ

σ · k√
2ωk

τa , (274)

〈p′, χ′;k1, a;k2, b | HππNN | p, χ〉 = − i

F 2
π

ωk1
− ωk2√

4ωk1
ωk2

ǫabcτc , (275)

〈p′
1, χ

′
1;p

′
2, χ

′
2 | HCT,0 | p1, χ1;p2, χ2〉 =

∑

α=S,T

Cα Γ1α · Γ2α , (276)

〈p′, χ′;k1, a;k2, b;k3, c | H3πNN | p, χ〉 =
2 i gA

F 3
π

1√
8ωk1

ωk2
ωk3

(
σ · k1 τa δbc

+ σ · k2 τb δca + σ · k3 τc δab

)
, (277)

〈k1, a;k2, b;k3, c;k4, d | H4π | 0〉 = − 4

F 2
π

1√
16ωk1

ωk2
ωk3

ωk4

×
[
δab δcd

(
k1µk

µ
2 + k3µk

µ
4 +m2

π

)

+ δac δbd
(
k1µk

µ
3 + k2µk

µ
4 +m2

π

)

+ δad δbc
(
k1µk

µ
4 + k2µk

µ
3 +m2

π

) ]
. (278)

B.2 ELECTROMAGNETIC-INTERACTION VERTICES

〈p′, χ′;k, a | HγπNN | p, χ;q, λ〉 = e
gA

Fπ

σ√
2ωk

· êqλ√
2ωq

ǫzabτb , (279)

〈k1, a;k2, b | Hγππ | q, λ〉 = i e
k1 − k2√
4ωk1

ωk2

· êqλ√
2ωq

ǫzab , (280)
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〈p′, χ′;k1, a;k2, b | HγππNN | p, χ;q, λ〉 = − e

F 2
π

1√
4ωk1

ωk2

êqλ√
2ωq

· (p
′ + p) + iσ × (p′ − p)

2mN

(δaz τb + δbz τa − 2 δab τz) , (281)

〈p′, χ′;k1, a;k2, b;k3, c | Hγ 3πNN | p, χ;q, λ〉 = −2 e
gA

F 3
π

σ√
8ωk1

ωk2
ωk3

· êqλ√
2ωq

τd (ǫzad δbc + ǫzbd δca + ǫzcd δab) , (282)

〈k1, a;k2, b;k3, c;k4, d | Hγ 4π | q, λ〉 = −i e 4

F 2
π

1√
16ωk1

ωk2
ωk3

ωk4

êqλ√
2ωq[

δcd ǫzab(k1 − k2) + δab ǫzcd(k3 − k4)

+ δbd ǫzac(k1 − k3) + δad ǫzbc(k2 − k3)

+ δac ǫzbd(k2 − k4) + δbc ǫzad(k1 − k4)
]
, (283)

〈p′, χ′ | HγNN | p, χ;q, λ〉 = − e

2mN

êqλ√
2ωq

·
[
eN (p′ + p) + i µn σ × q

]
. (284)

In these expressions p denotes the nucleon momentum in spin-isospin states specified

by χ, while the k’s and a, b, . . . denote pion momenta in isospin states a, b, . . . , and

q and λ the photon momentum and polarization state. For brevity, on the r.h.s. of

the equations above the spin-isospin states of the nucleon as well as the δ-functions

enforcing three-momentum conservation, are not shown explicitly. In Eq. (278),

the notation kµ
i kjµ denotes the combination ωki

ωkj
− ki · kj. Finally, vertices in

which one or more pions are in the initial state are obtained from those listed in

Eqs. (274)–(275), (277), (278), (280), and (283) by replacing ki → −ki and/or

ωki
→ −ωki

(of course, the energy replacements are not to be carried out in the

pion-field normalization factors). For example,

〈p′, χ′;k1, a | HππNN | p, χ;k2, b〉 = − i

F 2
π

ωk1
+ ωk2√

4ωk1
ωk2

ǫabcτc . (285)

B.3 FOUR-NUCLEON VERTICES

Strong Contact Vertices

The vertices induced by the contact interaction Hamiltonians are listed below. The

notation is the same as in Appendix B.1, but for

〈HCT2Di
〉 ≡ 〈p′

1, χ
′
1;p

′
2, χ

′
2 | HCT2D,i | p1, χ1;p2, χ2〉 , i = 1, . . . , 9 , (286)
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and

〈HCT2D,1〉 = −2C ′
1 (p1 · p2 + p′

1 · p′
2) , (287)

〈HCT2D,2〉 = C ′
2 (p1 · p′

2 + p′
1 · p2) , (288)

〈HCT2D,3〉 = −C ′
3

(
p2

1 + p′ 2
1 + p2

2 + p′ 2
2

)
, (289)

〈HCT2D,4〉 = i C ′
4 (σ1 + σ2) · (p1 × p′

2 − p′
1 × p2) , (290)

〈HCT2D,5〉 = i C ′
5 (σ1 · p1 × p′

1 + σ2 · p2 × p′
2) , (291)

〈HCT2D,6〉 = −i C ′
6 (σ1 · p2 × p′

2 + σ2 · p1 × p′
1) , (292)

〈HCT2D,7〉 = −2
[
C ′

7 (σ1 · p1 σ2 · p2 + σ1 · p′
1 σ2 · p′

2)

+C ′
8 (σ1 · p2 σ2 · p1 + σ1 · p′

2 σ2 · p′
1)

+C ′
9 σ1 · σ2 (p1 · p2 + p′

1 · p′
2)
]
, (293)

〈HCT2D,8〉 =
[
C ′

10 (σ1 · p′
1 σ2 · p2 + σ1 · p1 σ2 · p′

2) ,

+C ′
11 (σ1 · p′

2 σ2 · p1 + σ1 · p2 σ2 · p′
1) ,

+C ′
12 σ1 · σ2 (p1 · p′

2 + p′
1 · p2)

]
, (294)

〈HCT2D,9〉 = C ′
13

(
σ1 · p2 σ2 · p′

2 + σ1 · p′
1 σ2 · p1

+ σ1 · p′
2 σ2 · p2 + σ1 · p1 σ2 · p′

1

)

+ 2C ′
14 σ1 · σ2 (p1 · p′

1 + p2 · p′
2) . (295)

Electromagnetic Contact Vertices

The vertices induced by the contact electromagnetic-interaction Hamiltonians are

listed below. The notation is the same as in Appendix B.1, but for

〈HCTγ,i〉 ≡ 〈p′
1, χ

′
1;p

′
2, χ

′
2 | HCTγ,i | p1, χ1;p2, χ2;q, λ〉 , i = 1, . . . , 9 ,

〈HCTγ,nm〉 ≡ 〈p′
1, χ

′
1;p

′
2, χ

′
2 | HCTγ,nm | p1, χ1;p2, χ2;q, λ〉 , (296)

and

〈HCTγ,1〉 = 2 eC ′
1

[
e1 (p2 + p′

2) + e2 (p1 + p′
1)

]
· êqλ√

2ωq

, (297)

〈HCTγ,2〉 = − eC ′
2

[
e1 (p2 + p′

2) + e2 (p1 + p′
1)

]
· êqλ√

2ωq

, (298)

〈HCTγ,3〉 = 2 eC ′
3

[
e1 (p1 + p′

1) + e2 (p2 + p′
2)

]
· êqλ√

2ωq

, (299)
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〈HCTγ,4〉 = −i e C ′
4 (σ1 + σ2)×

[
e1 (p2 − p′

2) + e2 (p1 − p′
1)

]
· êqλ√

2ωq

,(300)

〈HCTγ,5〉 = −i e C ′
5

[
e1 σ1 × (p1 − p′

1) + e2 σ2 × (p2 − p′
2)

]
· êqλ√

2ωq

, (301)

〈HCTγ,6〉 = i e C ′
6

[
e1 σ2 × (p1 − p′

1) + e2 σ1 × (p2 − p′
2)

]
· êqλ√

2ωq

, (302)

〈HCTγ,7〉 = 2 e

[
C ′

7[e1 (p2 + p′
2) · σ2 σ1 + e2 (p1 + p′

1) · σ1 σ2]

+C ′
8[e1 (p2 + p′

2) · σ1 σ2 + e2 (p1 + p′
1) · σ2 σ1]

+C ′
9 σ1 · σ2[e1 (p2 + p′

2) + e2 (p1 + p′
1)]

]
· êqλ√

2ωq

, (303)

〈HCTγ,8〉 = −e
[
C ′

10[e1 (p2 + p′
2) · σ2 σ1 + e2 (p1 + p′

1) · σ1 σ2]

+C ′
11[e1 (p2 + p′

2) · σ1 σ2 + e2 (p1 + p′
1) · σ2 σ1]

+C ′
12 σ1 · σ2[e1 (p2 + p′

2) + e2 (p1 + p′
1)]

]
· êqλ√

2ωq

, (304)

〈HCTγ,9〉 = −e
[
C ′

13

[
e1 (p1 + p′

1) · σ1 σ2 + e1 (p1 + p′
1) · σ2 σ1

+e2 (p2 + p′
2) · σ1 σ2 + e2 (p2 + p′

2) · σ2 σ1

]

+2C ′
14 σ1 · σ2[e1 (p1 + p′

1) + e2 (p2 + p′
2)]

]
· êqλ√

2ωq

, (305)

〈HCTγ,nm〉 = i e C ′
15 (σ1 + σ2)× q · êqλ√

2ωq

+ C ′
16 (τ1,z − τ2,z) (σ1 − σ2)× q · êqλ√

2ωq

. (306)
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APPENDIX C

DIMENSIONAL REGULARIZATION OF KERNELS

In this appendix we report a list of general integration formulae [18, 20], useful to

carry out the regularization of the various kernels occurring in the potential and

current operators. Dimensional regularization is used for the sake of simplicity: be-

ing a mass independent regularization scheme, it respects the power counting. In

this sense, dimensional regularization is the natural regularization scheme for effec-

tive field theories. In dimensional regularization the loop momenta are formally un-

bounded. Nevertheless, once the renormalization program has been carried out—once

all divergences have been absorbed by a redefinition of the LECs at a given order—

the choice of the regularization procedure becomes irrelevant at that order [57], even

though the numerical values of the renormalized LECs will depend on the adopted

renormalization scheme. We are dealing here with perturbative renormalization: the

effective field theory is renormalizable order by order in the chiral expansion, as we

explicitly verify up to N3LO for the currents and the potential. We do not address the

issue of non-perturbative renormalization of the dynamical equation used to compute

observables (e.g. the Lippmann-Schwinger equation), for which we adopt a cut-off

regularization.

C.1 USEFUL INTEGRALS

We utilize the Feynman parameterization

1

AB
=

∫ 1

0

dy
1

[yA+ (1− y)B]2
, (307)

and, in order to simplify the energy factors entering the kernels, we make use of the

integral representations [58]:

1

ω+ + ω−

=
2

π

∫ ∞

0

dβ
β2

(ω2
+ + β2)(ω2

− + β2)
, (308)

1

ω+ ω− (ω+ + ω−)
=

2

π

∫ ∞

0

dβ
1

(ω2
+ + β2)(ω2

− + β2)
. (309)

Having defined ∫

p

≡
∫

ddp

(2π)d
, (310)
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we have:
∫

p

1

(p2 + A)α
=

1

(4π)d/2

Γ(α− d/2)

Γ(α)
A−(α−d/2) , (311)

∫

p

p2

(p2 + A)α
=

1

(4π)d/2

d

2

Γ(α− d/2− 1)

Γ(α)
A−(α−d/2−1) , (312)

∫

p

p4

(p2 + A)α
=

1

(4π)d/2

d (d+ 2)

4

Γ(α− d/2− 2)

Γ(α)
A−(α−d/2−2) , (313)

where Γ(z) is the Γ-function satisfying z Γ(z) = Γ(z + 1), with asymptotic behavior

for z → 0 given by

Γ(z) =
1

z
− γ +

(
γ2

2
+
π2

12

)
z + O(z2) , (314)

and γ ≈ 0.5772 is the Euler-Mascheroni constant. However, we note that, in order

to preserve physical dimensions, a renormalization scale µ has to be introduced, and

therefore a factor µ3−d should be understood in Eq. (310).

Finally, we use the following relations [59] to evaluate

∫
dx ln |x2 − a2| = x ln |x2 − a2| − 2 x+ a ln

∣∣∣∣
x+ a

x− a

∣∣∣∣ , (315)

∫
dxx2 ln |x2 − a2| =

1

3

(
x3 ln |x2 − a2| − 2

3
x3 − 2 a2x+ a3 ln

∣∣∣∣
x+ a

x− a

∣∣∣∣
)
, (316)

∫
dxx4 ln |x2 − a2| =

1

5

(
x5 ln |x2 − a2| − 2

5
x5 − 2

3
a2x3 − 2 a4x

+ a5 ln

∣∣∣∣
x+ a

x− a

∣∣∣∣
)
. (317)

C.2 REGULARIZATION OF THE KERNELS

As an example, we sketch the regularization of the kernel I(0)(k), given by

I(0)(k) =

∫

p

1

ω+ ω− (ω+ + ω−)
=

2

π

∫

p

∫ ∞

0

dβ
1

(ω2
+ + β2)(ω2

− + β2)
, (318)

where ω± =
√

(p± k)2 + 4m2
π. Using the Feynman integral parameterization of

Eq. (307) with A = ω2
+ + β2 and B = ω2

− + β2, we obtain

I(0)(k) =
2

π

∫

p

∫ 1

0

dy

∫ ∞

0

dβ
[
[p + (2 y − 1)k]2 + 4 [m2

π − y (y − 1) k2] + β2
]−2

=
1

2

∫

p

∫ 1

0

dy
[
p2 + 4 [m2

π − y (y − 1) k2]
]−3/2

, (319)



113

where in the second line we have also shifted the integration variable p→ p+(2 y−
1)k. The integral over p is reduced to the form given in Eq. (311) with d = 3,

α = 3/2, and A = 4 [m2
π − y (y − 1) k2]. With this choice of d and α, we are left

with a Γ-function of vanishing argument. In order to isolate the divergent part of

the integral, we set d = 3− ǫ and study its asymptotic behavior for ǫ→ 0+. Using

Γ
( ǫ

2

)
=

2

ǫ
− γ + O(ǫ) , (320)

Γ

(
3

2

)
=

√
π

2
, (321)

(
A

4 π

)−ǫ/2

= 1− ǫ

2
ln

A

4 π
+ O(ǫ2) , (322)

we find, neglecting O(ǫ) terms,

I(0)(k) =
1

8 π2

(
ln π +

2

ǫ
− γ
)
− 1

8 π2

∫ 1

0

dy ln

[
m2

π

µ2
− y (y − 1)

k2

µ2

]
. (323)

After setting y → (x+ 1)/2 and making use of Eq. (315), we obtain:

I(0)(k) = − 1

8 π2

(
s

k
ln
s+ k

s− k −
2

ǫ
+ γ − ln π + ln

m2
π

µ2
− 2

)
, (324)

where s =
√

4m2
π + k2.

The kernels

I(2)(k) =

∫

p

p2

ω+ ω− (ω+ + ω−)
, (325)

I
(2)
ij (k) =

∫

p

pi pj

ω+ ω− (ω+ + ω−)
, (326)

can be easily evaluated as shown above. We find:

I(2)(k) =
1

24 π2

[
2 s3

k
ln
s+ k

s− k + 2 k2

(
−2

ǫ
+ γ − ln π + ln

m2
π

µ2
− 5

3

)

+ 18m2
π

(
−2

ǫ
+ γ − ln π + ln

m2
π

µ2
− 11

9

)]
, (327)
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I
(2)
ij (k) =

1

24 π2
δij

[
s3

k
ln
s + k

s− k + k2

(
−2

ǫ
+ γ − ln π + ln

m2
π

µ2
− 2

)

+ 6m2
π

(
−2

ǫ
+ γ − ln π + ln

m2
π

µ2
− 5

3

)]

− 1

24 π2

kikj

k2

[
s3

k
ln
s+ k

s− k

+ k2

(
−2

ǫ
+ γ − lnπ + ln

m2
π

µ2
− 8

3

)
− 8m2

π

]
. (328)

Next, we note that

f(ω+, ω−) ≡ ω2
+ + ω+ ω− + ω2

−

ω3
+ ω

3
−(ω+ + ω−)

= −1

2

d

dm2
π

1

ω+ ω− (ω+ + ω−)
, (329)

from which we obtain:

J (0)(k) =

∫

p

f(ω+, ω−) =
1

8 π2

1

k s
ln
s+ k

s− k , (330)

J (2)(k) =

∫

p

p2f(ω+, ω−) = − 1

8 π2

[
2 s

k
ln
s+ k

s− k

+ 3

(
−2

ǫ
+ γ − ln π + ln

m2
π

µ2
− 2

3

)]
, (331)

J
(2)
ij (k) =

∫

p

pipjf(ω+, ω−) = − 1

8 π2
δij

[
s

k
ln
s+ k

s− k

+

(
−2

ǫ
+ γ − ln π + ln

m2
π

µ2
− 4

3

)]

+
1

8 π2

kikj

k2

(
s

k
ln
s+ k

s− k − 2

)
, (332)

J (4)(k) =

∫

p

p4f(ω+, ω−) =
1

8 π2

[
8 s3

3 k
ln
s+ k

s− k

+ 30m2
π

(
−2

ǫ
+ γ − ln π + ln

m2
π

µ2
− 29

45

)

+
5

3
k2

(
−2

ǫ
+ γ − lnπ + ln

m2
π

µ2
− 12

5

)]
. (333)

The set of kernels involving the energy factor

2ω+ + ω−

2ω3
+ ω− (ω+ + ω−)2

can be reduced to those of type J (2n)(k) by noting that
∫

p

2ω+ + ω−

2ω3
+ ω− (ω+ + ω−)2

=
1

4

∫

p

ω2
+ + ω+ ω− + ω2

−

ω3
+ ω

3
−(ω+ + ω−)

=
1

4
J (0)(k) , (334)
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and similarly for J (2)(k), J
(2)
ij (k), J (4)(k).

The kernels involving the energy factor g(ω+, ω−),

g(ω+, ω−) =
3

2

2ω+ + ω−

ω5
+ ω−(ω+ + ω−)2

+
ω+ + 2ω−

ω3
+ ω

3
−(ω+ + ω−)2

= −1

2

d

dm2
π

2ω+ + ω−

2ω3
+ ω− (ω+ + ω−)2

, (335)

easily follow from

K(0)(k) =

∫

p

g(ω+, ω−) = −1

8

d

dm2
π

J (0)(k) =
1

16

d2

d(m2
π)2

I(0)(k) , (336)

and similarly for K(2n)(k), leading to:

K(0)(k) =

∫

p

g(ω+, ω−) =
1

64π2

[
2

k s3
ln
s+ k

s− k +
1

s2m2
π

]
, (337)

K(2)(k) =

∫

p

p2 g(ω+, ω−) =
1

64π2

[
4

k s
ln
s+ k

s− k +
1

m2
π

]
, (338)

K
(2)
ij (k) =

∫

p

pi pj g(ω+, ω−)

=
1

64π2
δij

[
2

k s
ln
s+ k

s− k

]
− 1

64π2

kikj

k2

[
2

k s
ln
s+ k

s− k −
1

m2
π

]
, (339)

K(4)(k) =

∫

p

p4 g(ω+, ω−)

= − 1

64π2

[
16 s

k
ln
s+ k

s− k −
k2

m2
π

+ 30

(
−2

ǫ
+ γ − ln π + ln

m2
π

µ2

)]
,(340)

K
(4)
ij (k) =

∫

p

p2 pi pj g(ω+, ω−)

= − 1

64π2
δij

[
8 s

k
ln
s+ k

s− k + 10

(
−2

ǫ
+ γ − ln π + ln

m2
π

µ2
− 8

15

)]

+
1

64π2

kikj

k2

[
8 s

k
ln
s+ k

s− k +
k2

m2
π

− 16

]
. (341)

Finally, for the kernel entering diagram e) in Fig. 7, we obtain

L(k) =

∫

p

(ω+ − ω−)2

ω+ ω−(ω+ + ω−)
=

∫

p

[
− 4

(ω+ + ω−)
+

2

ω+

]

= − 1

6 π2

[
s3

k
ln
s+ k

s− k − 8m2
π + k2

(
−2

ǫ
+ γ − ln π + ln

m2
π

µ2
− 8

3

)]
,(342)
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while for the constants M (n) entering Eqs. (80)–(81),

M (1) =

∫

p

1

ωp

=
m2

π

8 π2

(
−2

ǫ
+ γ − ln 4π + ln

m2
π

µ2
− 1

)
, (343)

M (3) =

∫

p

p2

ω3
p

=
3m2

π

8 π2

(
−2

ǫ
+ γ − ln 4π + ln

m2
π

µ2
− 1

3

)
. (344)
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APPENDIX D

RECOIL CORRECTIONS

Consider the set of time-ordered diagrams, displayed in Fig. 40 and denoted as type i)

in Fig. 28. It is easily seen that recoil corrections in diagrams a)+b) and i)+j) cancel

out the contributions associated with diagrams c)+d) and k)+l), respectively, so that

the expression for type i) diagrams in Fig. 28—which happens to vanish—results from

diagrams e)-h). Let N denote the product of the four vertices in diagrams a)-d); then

the contribution of diagrams a)+b) is given by

p′

p

a) b) c) d)

e) f) g) h)

i) j) k) l)

1

2

FIG. 40: Set of time-ordered diagrams for the contribution illustrated by the single
diagram i) in Fig. 28. Notation as in Fig. 20.

a) + b) of Fig. 14 =
N

(Ei −E ′
p − E2 + iη)(Ei − Ep −E2 − ω1 + iη)

×
[

1

Ei − E ′
1 −E2 − ω2 + iη

+
1

Ei −E ′
p − E ′

2 − ω2 + iη

]
, (345)
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where the labeling of the momenta is as in panel a), and Ep and E ′
p are the energies of

the intermediate nucleons. The expression in square brackets above can be expanded

as [
. . .

]
≃ − 1

ω2

[
2 +

Ei −E ′
p − E2

ω2

]
, (346)

where use has been made of (overall) energy conservation, Ei = E ′
1 + E ′

2, and hence

a) + b) of Fig. 14 = (terms in iterated LS equation)− N

ω2
2 (Ei −Ep − E2 − ω1 + iη)

.

(347)

The second term above in the static limit reduces to N/(ω1 ω
2
2), which exactly

a) b) c) d) e)

f) g) h) i) l)

k) l) m) n) o)

p) q) r) s) t)

FIG. 41: Subset of time-ordered diagrams for the contribution illustrated by the
single diagram j) in Fig. 28. See text for discussion. Notation as in Fig. 20.

cancels the contribution of diagrams c)+d). These exact cancellations persist also in

the k)-l) as well as u)-v) type diagrams of Figs. 28 and 29, so that in computing their
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contributions we only take into account the subset of (twenty, see below) time-ordered

diagrams of topology as shown in those figures.

For the type j) contribution we find that the cancellation between irreducible and

recoil-corrected reducible diagrams is only partial, and the result given in Eq. (170)

corresponds to taking into account only the irreducible diagrams illustrated in Fig. 41

(the same subset considered in the evaluation of type u)-v) above). However, the

remaining irreducible and recoil-corrected reducible diagrams produce an additional

contribution of the form

e
g4

A

F 4
π

Nij(q)

[
(τ1 × τ2)z (q× k2)j + τ2,z [q× (σ1 × k2)]j

]
σ2 · k2

ω2
k2

+ e
g4

A

2F 4
π

Ni(q) τ2,z
σ1 · k2 σ2 · k2

ω2
k2

+ 1 ⇋ 2 , (348)

where the kernels Nij and Ni are

Nij(q) =

∫

p

pi pj

ω2
+ ω

2
− (ω+ + ω−)

, (349)

Ni(q) =

∫

p

pi (p
2 − q2)

ω+ − ω−

ω2
+ ω

2
− (ω+ + ω−)2

, (350)

which, however, does not lead to a Hermitian current density, since this would require

j(k1,k2) = j†(−k1,−k2). We have ignored this contribution.
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APPENDIX E

TRANSLATIONALLY INVARIANT MAGNETIC MOMENTS

In this appendix we list the translationally invariant contributions to the magnetic

moment—Eq. (212)—associated with currents a)-e) and i) in Fig. 25. Currents of

type a), d), g), and i) have been properly renormalized, and their final expressions are

given in Eqs. (147)–(150). The translationally invariant magnetic moments generated

by them is obtained by inserting the corresponding expressions into Eq. (212). In

particular, the magnetic moment associated with the currents of type c) and g)

vanishes, while the remaining renormalized currents give

µT, a(k) =
e g2

A

8 π2F 4
π

τ2,zG(k)

[(
1− 2m2

π

4m2
π + k2

)
σ1 +

2m2
π

4m2
π + k2

kσ1 · k
k2

]

+
e g2

A

8 π2F 4
π

τ2,z

(
σ1 −

kσ1 · k
k2

)
+ 1 ⇋ 2 , (351)

µT,d(k) = − e g4
A

8π2 F 4
π

τ2,z G(k)

[[
1− 2m2

π

4m2
π + k2

− 8m4
π

(4m2
π + k2)2

]
σ1

+
[
− 2m2

π

4m2
π + k2

+
8m4

π

(4m2
π + k2)2

]kσ1 · k
k2

]

− e g4
A

8π2 F 4
π

τ2,z

[(
1− 4m2

π

4m2
π + k2

)
σ1

−
(

1− 4m2
π

4m2
π + k2

)
kσ1 · k
k2

]
+ 1 ⇋ 2 , (352)

µT, i(k) =
e g2

A

2π2 F 2
π

τ1,z (CS σ1 − CT σ2) + 1 ⇋ 2 . (353)

To derive the translationally invariant magnetic moments due to currents of type

b) and e) in Fig. 25, we utilize a different strategy. We start from the expressions

given in Eqs. (131) and (134). The kernels of these currents involve three pion

energies, ωi with i = 1, 2, 3, corresponding to the internal exchanged pions, and their

explicit expressions, with reference to Fig. 25, are

ω1 =
(
q2

1 +m2
π

)1/2
=
[
(k1 + q2)

2 +m2
π

]1/2
,

ω2 =
(
q2

2 +m2
π

)1/2
, (354)

ω3 =
(
q2

3 +m2
π

)1/2
=
[
(k2 − q2)

2 +m2
π

]1/2
,
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with the additional constraint q1 + q3 = k1 + k2 = q. We evaluate the mag-

netic moment associated with these currents by inserting Eqs. (131) and (134) into

Eq. (212). The corresponding magnetic moments are then expressed in terms of ker-

nels involving only two-pion energies, since at q = 0 the following relation holds true

ω1|q=0 = ω3 |q=0. The dimensional regularization of the kernels is then carried out

as illustrated in Appendix C. In particular, we find that the magnetic moments for

the currents of type b), and e) read

µT,b(k) =
e g2

A

2F 4
π

τ2,z

[ [
J

(2)
ij (k)− ki kj J

(0)(k)
]
σ1,j

−
[
J (2)(k)− k2J (0)(k)

]
σ1

]
+ 1 ⇋ 2 , (355)

µT, e(k) =
2 e g4

A

F 4
π

τ2,z

[[
K(4)(k)− 2 k2K(2)(k) + k4K(0)(k)

]
σ1

−
[
K

(4)
ij (k)− k2K

(2)
ij (k)− kikjK

(2)(k) + kikjk
2K(0)(k)

]
σ1,j

− 4 ǫijk kk (σ1 × k)lK
(2)
jl (k)

]
+ 1 ⇋ 2 , (356)

where the kernels J (n), and K(n) are defined in Appendix C. The infinite parts of

the kernels are dropped, since in Sec. IV.2.3 we showed that the infinite parts of the

currents of type b), and e) contribute to renormalize the LECs entering the contact

currents at N3LO, therefore the renormalized operators follow from the finite part of

the kernels, and are given by

µT,b(k) =
e g2

A

8 π2F 4
π

τ2,zG(k)

[(
1− 2m2

π

4m2
π + k2

)
σ1 +

2m2
π

4m2
π + k2

kσ1 · k
k2

]

− e g2
A

8 π2F 4
π

τ2,z
kσ1 · k
k2

+ 1 ⇋ 2 , (357)

µT, e(k) = − e g4
A

8π2 F 4
π

τ2,z G(k)

[[
1 +

6m2
π

4m2
π + k2

− 8m4
π

(4m2
π + k2)2

]
σ1

+

[
4− 10m2

π

4m2
π + k2

+
8m4

π

(4m2
π + k2)2

]
kσ1 · k
k2

]

− e g4
A

8π2 F 4
π

τ2,z

[(
1− 4m2

π

4m2
π + k2

)
σ1

−
(

5− 4m2
π

4m2
π + k2

)
kσ1 · k
k2

]
+ 1 ⇋ 2 . (358)
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After combining Eqs. (351)–(353) with Eqs. (357)–(358) we are left with the ex-

pression of the magnetic moment given in Eq. (213), where we dropped the overline

indicating that the LECs have been properly renormalized.
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